Diffusion Generative Models

CS 274E Guest Lecture

Gavin Kerrigan
2023 16 November

gavin.k@uci.edu

Introduction

Diffusion Generative Models are a class of deep generative models
that generate data by iterative denoising.

Introduction

Unconditional generation: Images

Figure 1: [Dhariwal and Nichol, Diffusion Models Beat GANs on Image Synthesis,
NeurIPS 2021]

Introduction

Unconditional generation: Point clouds

Figure 2: [Cai et al., Learning Gradient Fields for Shape Generation, ECCV 2020]

Introduction

Conditional generation: Text — Image

« e.g. DALLE-2, Imagen, Stable Diffusion, etc.

Figure 3: “An oil painting of a cat wearing an ornate wizard hat and robe”

openai.com/dall-e-2

Introduction

Conditional generation: Image — Image

e e.g. Super-resolution

Input SR3 output Reference

Figure J: [Saharia et al., Image Super-Resolution via Iterative Refinement, ICCV
2021]

Introduction

Conditional generation: Image — Image

Precipitation forecasting

geopotential land-sea mask 100m wind speed

[Asperti et al., 2023]

Introduction

Conditional generation: Graphs — 3D Molecules

Reference

Figure 6: [Xu et al., GeoDiff: A Geometric Diffusion Model for Molecular
Conformation Generation, ICLR 2022]

Introduction

Conditional generation: Graphs — 3D Molecules

ligand &
protein

DIFFDOCK

reverse diffusion over
translations, rotations and torsions

Figure 7: [Corso et al., DiffDock: Diffusion Steps, Twists, and Turns for Molecular
Docking, ICLR 2023]

Denoising Diffusion Models

Denoising Diffusion Models

“Creating noise from data is easy; creating data from noise is

generative modeling™!.

This talk: Denoising Diffusion Probabilistic Models (DDPM)

 Derivations from [Ho et al., DDPM, NeurIPS 2020] and
[Sohl-Dickstein et al., Deep Unsupervised Learning using
Nonequilibrium Thermodynamics, ICML 2015]

« Based in part on Arash Vahdat’s CVPR 2022 tutorial

1Song et al., Score-Based Generative Modeling through Stochastic Differential
Equations, ICLR 2021

10

Denoising Diffusion Models

“Creating noise from data is easy; creating data from noise is

generative modeling”?.

2Song et al., Score-Based Generative Modeling through Stochastic Differential
Equations, ICLR 2021

11

Denoising Diffusion Models

Have samples from an unknown data distribution g¢(z)

12

Forward Process

Creating noise from data is easy:

o Choose an integer T (typically large) and a variance schedule j;
o [is often a linear interpolation between 81 and S

o Slowly make your data noisier over T steps

Ty = \/1*6t$t_1+\/a€ ENN(O,I) (1)
Q@ | 2—1) = N (2 | /1 = Beay—1, Bed) (2)

This defines the forward (diffusion) process:

t=10 t =/50 t=[100/

13

Forward Process

Forward Process:

gz | m—1) = Nz | V1 = Bewea, Bid)

o Gives you a joint distribution

T

q(z17 | 20) = H (@t | w—1)

=1
Similar to a latent variable model / VAE:
o Encoder: ¢

« Latent variable(s): z1.7

o Observed variable: xy

14

Forward Process

Forward Process:

(l"f | Tt— 1 It | AV 1- BfIf 17B1‘ (5)

Cheap to sample at any time t. Set v; = H 1 (1= Bs). Then:

T = /720 + /1 — i€ e~ N(0,1) (6)
(e | 20) = N (2 | V720, (1= ye)1) (7)

Proof (sketch): Write out the densities and compute.
« Note that for large t, q(z; | m) =~ N (0,])

t=10 t =/50 t =100 t=200.,

Denoising Diffusion Models

“Creating noise from data is easy; creating data from noise is

generative Illodelillg”3.

3Song et al., Score-Based Generative Modeling through Stochastic Differential
Equations, ICLR 2021

16

Reverse Process

Generate data by reversing the diffusion process

+ Sample z1 ~ N(0,])

o Iteratively sample

T~ q(z-1 | m) t=T17,T-1,...,1

17

Reverse Process

Generate data by reversing the diffusion process

Sample zp ~ N(0,])

« Iteratively sample

L1 ~ (@1 | @) t=T,T—1,...,1
« Problem: ’ ;
gz | z—1)q(2e—1)
q(zt)

o Know forward transitions, but marginals are intractable

Q(It—l | It) =

« Variational approximation:

Q(ﬂftq | ﬁft) ~ p@(xtfl | fEt)
= N(z—1 | po(ze, t), Xo(, 1))

18

Reverse Process

Variational approximation:
Q(«thl | «Tt) ~ pe(mtfl \ »Tt) (13)
- N(xtfl ‘ M@(wta t)7 Ze(mh t)) (14)
How can we train such a model?

o Want to maximize the model likelihood pg(zo)
o+ Can think of py(z;—1 | ;) as the decoder in a VAE

p(@i—1]x¢) P(@¢|Tis1) p(xr—1|xT)

q(@e|Te—1) q(weir|ay) q(xr|rr_1)

Figure 8: Image credit: Calvin Luo

19

Loss Analysis

The usual ELBO (treating z;.7 as latents) is

Pe(l’o,l‘LT)] (15)

q(z1.7 | 70)
= EZLTNQ(*\JCO) [IOgPQ(xO | ‘Tl)] — KL [q(a:l:T ‘ xO) || p@(xl:T)]

log po(70) > Eqy pmg(—|a0) {log

Let’s analyze this to get something we can compute

Reminder: KL is the Kullback-Liebler divergence; a “distance”
between probability distributions

LlaGo) || o) = [ngj)qumx (16)

20

KL Chain Rule

Chain rule for the KL divergence:

KLp(z, y) | a(z, y)] = KL[p(2) || ¢(2)] + Eonp(a) KL [p(y]2) || q(yl2)] (17)

Proof (sketch):

Decompose the joint distributions into a product of marginal and
conditional distributions. Plug into the definition of the KL
divergence and compute.

21

KL Chain Rule

Chain rule for KLi divergences:
KL[p(z,9) | a(z,y)] = KL[p() || ¢(2)] + Eonp KL [p(3]2) || q(yl2)] (18)
Apply to the chain rule to condition on z7:

log po(20)
>E,[log go(zo | 21)] — KL[g(z1.7 | 20) || po(z1.7)]
=E, [log go(xo | 1)] — KL [g(z7 | 20) || po(z7)]

7Eq|<L[Q(l’1:T71 ‘ ZL’(),:L‘T) H p(f(l‘l:Tfl | ‘LT”

22

KL Chain Rule

Chain rule for KL divergences:
KL[p(z,9) | q(z,9)] = KL[p() || ¢(2)] + Eonp() KL [p(3]2) |] a(yl2)] (19)
Apply to the chain rule to condition on z7:
log po (o)
> E, [log go(ao | 21)] — KL [g(21.7 | 20) || po(1.7)]
= Eq[log go(z0 | 21)] — KL[g(z7 | 20) || po(z7)]
—EKL[g(z1:7-1 | 70, 27) || Po(T1:7-1 | 27)]

Repeat to condition on xp_1,x7_9,...,21:

log pg(z0) >Eq4 | log pe(zo | 21)—

T

KL [a(zr | a0) [po(er)] = Y KLla(zeo1 | 21 0) || polzi—1 | @)

23

Loss Analysis

Three types of terms appear in the loss:

Ly := KL{g(er | 20) || po(e7)]

Lo :=E, [log po(mo | 71)]

Lt—l = EqKI—[q(wt—l | .Z't,xo) || p@(xt—l ‘ xt)}

24

Loss Analysis

Ly = KL[g(z7 | 70) || po(zT)] (23)

This measures the error at the end of the forward process, i.e. t= T.

o We typically choose pg(z1) = N (0, I)
« Note g(zr | 70) =~ N (0, 1) for T sufficiently large

« Hence, Lt is negligible and is typically ignored during training

25

Loss Analysis

Lo :=E4[log po(wo | 71)] (24)

Measures the error at the end of the backwards process, i.e. t = 0.

« This is essentially a decoder log-likelihood
» Analogous to the reconstruction term in a VAE

» Cheap to compute

26

Loss Analysis

L1 :=EKL[g(zi—1 | 7, 70) || polzi—1 |)] (25)

Measures the error between the at intermediate steps between

1. The model’s reverse transitions pp(z;—1 | 24)

2. The true reverse transitions g(x:— 1 | 4, 7p)
Important note: the true reverse transitions are conditioned on
o g(m—1 | ;) is intractible

o ... but we'll see g(w—1 | 24, 7p) is known!

27

Loss Analysis

By Bayes’ rule:

q(fl?t | It—l,IO)Q(It—l \ Io)

T | xp, x9) = 26
e iCre |) 2
The right-hand side only involves the forward process
o ... so everything is known and Gaussian
After a tedious but straightforward calculation:
Wit | 2 a0) = N (gl 20), 02(0) 1 (27)
v Yt—1P5¢ V1= 1— v 1— v
,LLq(ZI:t, {1}0) = T + Bt(il 1) Ty O'g(t) = i 1/8t
L= L= L=

28

Model Parametrization

The story so far:

Ly i =EKL[g(zi—1 | 2, 20) || polze1 | 21)]

a1 | 2, 10) = N (uglae, 20), o5 () 1)

How should we parametrize the model py (2,1 | 24)?

29

Model Parametrization

The story so far:

Li_1 :=EKL[g(zi—1 | 2, 20) || powe—1 | 21)] (30)
gl | a0) = N(pg(ze, 20), 05 () 1) (31)

How should we parametrize the model py(z; 1 | 2;)7?

Since ¢(z;—1 | 24, 79) is Gaussian, let’s assume py(z,1 | 2;) is too:

polre | 2e) = N (o (i, 1), Zo (22, 1)) (32)

o Now, we parametrize pg(z:, t) and Zg(zy, t)

30

Model Parametrization

Ly :=EKL[g(z—1 | 2, 20) || po(we1 | 1))
Az | 20 10) = N (pg(me, 20), 0o (t) 1)
po(zi1 | m) =N (ug(ze, t), Xo(my, 1))

Let’s make our lives easy and set

Yo(wp, t) = 04(t)*1

The KL between Gaussians has a closed form:

1
Ly 1 =E, m”#e(% t) — pg(z, 70)| 3| + C

31

Model Parametrization

1

)

Ly =]Eq

(110 (2, 1) = pg(ae, w0)|13] (38)

Variational mean g needs to predict the denoised mean u,.

How should we parametrize pg (2, t)?

o Most straightforward: just have network try to predict ug4, since
this is known

o Can we do better?

32

Model Parametrization: Data Prediction

1
Liy=E, m [||N9(=Tta t) — Hq(l’t,Io)Hg]

Idea: we can exploit the structure of ;14 to obtain a better

parametrization

VB VIS B

Ha\Zt, Zp) =
Q(t) 1= T—

Since the model has z; as input, we can parametrize via

V1B -

17’725 1*’725

i.e. network needs to predict noise-free input from xz;:

e (‘Z'ta t)

w24, t) = 10

VI—=PB(1— 'Yt—l)xt

(39)

(40)

(41)

33

Model Parametrization: Data Prediction

1
L, =E, m (1o (e, t) — prq(ze, 70)|[3]

o (zp, t) = @ft To (e, 1) + \/1_7?(17: %_1):5,5

Loss simplifies to

Ly, = IEq [CtH:CG(xtv t) - x0|‘2]

1 v_1p7
203(15) (1 — ;)2

(45)

(46)

34

Model Parametrization: Noise Prediction

L1 =E, 201“) (1110,) — (e, 70) 12] (47)

An alternative parametrization
Since z; = /w0 + /1 — € for e ~ N(0, I):

V=15t V1= Bl —7i-1)
1= 1—7

/,Lq(xt,xo) Tt

1 B)
= —— | T — €
V1—P < ! V1=
We can thus parametrize pg as:

R A
paten) = s (= et) “8)

i.e. network tries to predict noise added to z;

eg(z, t) ~ € (49)

Denoising Diffusion Models: Noise Prediction

This parametrization results in a fairly simple and interpretable loss:

Ly =E. [Cyl|e — eg(z0. 1)]]?] e~ N(0,1) (50)

o (}is a time-dependent constant; often dropped during training

for simplicity

52
= 52— A7) (51

o ¢eg(z, t) is a network that tries to predict the added noise from

the noisy input —i.e. it is denoising

36

Denoising Diffusion Models: Training

Putting everything together:

L=E, |logpy(zo | 21) E:CLEH6

Algorithm 1 Training

. repeat
x0 ~ ¢(

T’ll\t, l"l”ldlLI’lt descent step on
2 {-..V a;Xg + \.»-"'1 — (Y€, f__) H

>: until com-’crgcd

o (} is ignored

o Likelihood term is assumed to be Gaussian

o(z, 1) (52)

o Recall 7y = \/7:79 + +/1 — vs¢ — pseudocode uses @y = ¢ 87

Denoising Diffusion Models: Sampling

Sampling:

Algorithm 2 Sampling
: xr ~N(0,1)

I)ift > 1, elsez=0

1
2
3
4 xt1= = |x j.‘.=i._€3(:x-{- i])-}-mz
5: end for '

y: return Xg

« Notation: oy =1 — 8; and oy = 04(%)

38

Denoising Diffusion Models

Some practical details:

o For images, €p(xt, 1) is typically implemented via the U-Net
architecture

+ Time input ¢ is discrete integer — usually handled via (learnable)
embeddings

o Can tune forward process: number of steps T, variance schedule

Be

ime Representation
Fully-connected
Layers

Figure 9: Image credit: Arash Vahdat

39

Denoising Diffusion Models

Some samples from a trained DDPM model

Figure 10: [Ho et al., DDPM, 2020]

40

Conditional Diffusion Models

41

Conditional Diffusion Models

Conditioning information ¢, e.g.

o text (embedding)
« class label

o image(s)

Condition reverse chain on c¢:

T
p(%T\CfP9$TH (ze-1 | 21, 0) (55)

Loss can be derived in an analogous way:

log po(z0]c) ZEq[Inge(xo |21, ¢) — KL[g(er | 20) || po(ar)]

T

- Z KL [g(zt—1 | 2t, 20) || Po(zi-1 | @1, €)]

t=2

42

Conditional Diffusion Models

Condition reverse chain on c¢:

T
p(J:o:r\C—pexTH (-1 | 1, ¢) (56)

Loss can be derived in an analogous way:

log po a0/<) ZEq[bgPe(ﬂfa |21, ¢) — KL [a(ar | 20) | po (o)

T

— Z KL[g(ze—1 | 71, 20) || po (w1 | 24,)]

=

« Basic idea still holds for conditional models

o Challenge: building architectures to best make use of ¢

43

Conditional Diffusion Models

How do you model
po(Te—1 | 21, €)? (57)

Some examples:

+ Scalar ¢ (e.g. class labels, time): pass through small MLP; mix
with hidden layers

ime Representation

Fully-connected
Layers

Figure 11: Image credit: Arash Vahdat

44

Conditional Diffusion Models

How do you model
po(Te—1 | 21, €)? (58)

Some examples:

« Image c: concatenate channel-wise with x;
o Can be easily combined with scalar information

82,1024 82,1024

1282, 128 Ye-1

Figure 12: [Saharia et al., Image Super-Resolution via Iterative Refinement, 2021]

Conditional Diffusion Models

Case study: Imagen text-to-image model

o Text prompt embedded into a latent space (via T5)
» Cascaded image-to-image super resolution models

Text Embedding

x 1024 Image

Figure 13: [Saharia et al., Photorealistic Text-to-Image Diffusion Models..., 2022]]

46

Connections to Score-Based Models

47

Score-Based Models

Tweeedie’s Formula (1956):

zn~ N(me ¥.) (59)
Elps | 2l = 24+ 2,V log p(2))

Given a sample z from a Gaussian, our best guess for the mean is to
perturb zin the direction that most increases the log density.

o« The gradient V,log p(z) is called the score of p(z)

48

Score-Based Models

Tweeedie’s Formulas:

zn~ N(Nm %)
E[/U'z | Z] =z+X.;V.log p(z)

Suppose we have a noisy measurement

z2=z+e¢ e ~N(0,%)
Then Tweedie’s formula says:

Elz| 7 = /xp(x| 2)dr = z+ XV log p(2)

If you know V,log p(z), you don’t need to know p(z | z)!

49

Score-Based Models

Tweeedie’s Formulas:

2~ N(pz,X,) = Elp. | 4 = 24+ 3.V, log p(2)
Recall our forward process:
g(xr | 20) = N (2 | vyeao, (L= 7)1)
2= /Yito + V1 —ve e~ N(0,])

By Tweedie’s formula:

Elz | @) = — (xt—|— V1 —Vlog p(x)

ﬂ

50

Score-Based Models

Recall our setup:

L1 == EKL[g(zi-1 | 21, 70) || po(mi-1 |)]
Q@1 | 21, 70) = N (pglar, 1), 05(t) 1)
pg(il?,;l | It) = N(MH(xb t)’ 29($t7 t))

By Tweedie’s formula (plug in for xp):

Hq\Tt, Zo
Q(t) 1= T—my

= ! b V log p()
V1 —5t \/1 — By

Thus we have an alternative parametrization:

1 Bt
V1—=35 V1= ﬂt
sz, t) = Vlog p(z)

It+

(Itv)

/Le(Itv t) =

Vb V=B

AAA
< N9 o
— o ©
NN AN

(72)

(73)

Score-Based Models

Further connections:

oz 1) ~ V log pla) = / d(20)V log a(z: | 70)d

— [dta) (522)

= _E,, <6> e~ N(0,1)

V31—t
€
VT
That is:
(21, t) L eo(xt, t)
$ ~ —
o\ Lt m O\ Lty

Predicting the score is the same (up to a time-dependent constant) as

predicting the noise

Score-Based Models

Thus an alternative form of the loss is:
Li1 =By [Cil|so(z, t) — Vlog p(x)][3] (81)

i.e. we can predict the score rather than the added noise
Note that
Viogp(a) = | ala)Vala |)y (52)

is intractable as written

« Requires specialized techniques for score-matching

« Beyond the scope of this lecture

53

Conditional Diffusion Models

Condition reverse chain on c¢:

T
po(zo:7 | ©) —pemTH (ze—1 | ¢, €)

Loss can be derived in an analogous way:

log po /<) >Eq[10gpe($o |21, 6) — KL [a(ar | 20) || 7o o)

T

— Z KL[g(z—1 | 1, 70) || po(Ti-1 | 21,)]

=

« Basic idea still holds for conditional models
o Challenge: building architectures to best make use of ¢

» Score-based models can be conditioned via guidance

(83)

Conclusions and Summary

ot

ot

Conclusions and Summary

Diffusion Generative Models are a class of deep generative models
that generate data by iterative denoising.

» Can be applied to a wide array of conditional and unconditional
generation tasks

o The forward process is a Markov chain that turns our data into
noise

o We learn to undo this procedure via a variational approximation
to the time-reversed chain

56

Conclusions and Summary

Diffusion Generative Models are a class of deep generative models
that generate data by iterative denoising.

There are many complementary perspectives on diffusion models:

o Hierarchical VAEs; Latent variable models
o From z, predicting:

+ Denoised input o
+ Added noise €
« Score Vlog p(z)

57

Conclusions and Summary

Not covered today:

A lot!

Continuous-time perspectives via Stochastic Differential
Equations (SDEs)

Improvements to forward process [Kingma et al., Variational
Diffusion Models, NeurIPS 2021]

Techniques to speed up generation [Song et al., Denoising
Diffusion Implicit Models, ICLR 2021]

Conditional generation methods [Ho et al., Classifier Free
Guidance, 2022]

58

Additional Resources

« CVPR 2022 tutorial:
cvpr2022-tutorial-diffusion-models.github.io

« Calvin Luo’s blog: calvinyluo.com/2022/08/26/
diffusion-tutorial.html

« Yang Song’s blog: yang-song.net/blog/2021/score/

cvpr2022-tutorial-diffusion-models.github.io
calvinyluo.com/2022/08/26/diffusion-tutorial.html
calvinyluo.com/2022/08/26/diffusion-tutorial.html
yang-song.net/blog/2021/score/

Thanks!
gavin.k@Quci.edu

gavinkerrigan.github.io

60

	Denoising Diffusion Models
	Conditional Diffusion Models
	Connections to Score-Based Models
	Conclusions and Summary

