
Diffusion Generative Models
CS 274E Guest Lecture

Gavin Kerrigan
2023 16 November

gavin.k@uci.edu

Introduction

Diffusion Generative Models are a class of deep generative models
that generate data by iterative denoising.

1

Introduction

Unconditional generation: Images

Figure 1: [Dhariwal and Nichol, Diffusion Models Beat GANs on Image Synthesis,
NeurIPS 2021]

2

Introduction

Unconditional generation: Point clouds

Figure 2: [Cai et al., Learning Gradient Fields for Shape Generation, ECCV 2020]

3

Introduction

Conditional generation: Text → Image

• e.g. DALLE-2, Imagen, Stable Diffusion, etc.

Figure 3: “An oil painting of a cat wearing an ornate wizard hat and robe”

openai.com/dall-e-2

4

Introduction

Conditional generation: Image → Image

• e.g. Super-resolution

Figure 4: [Saharia et al., Image Super-Resolution via Iterative Refinement, ICCV
2021]

5

Introduction

Conditional generation: Image → Image

• Precipitation forecasting

[Asperti et al., 2023]

6

Introduction

Conditional generation: Graphs → 3D Molecules

Figure 6: [Xu et al., GeoDiff: A Geometric Diffusion Model for Molecular
Conformation Generation, ICLR 2022]

7

Introduction

Conditional generation: Graphs → 3D Molecules

Figure 7: [Corso et al., DiffDock: Diffusion Steps, Twists, and Turns for Molecular
Docking, ICLR 2023]

8

Denoising Diffusion Models

9

Denoising Diffusion Models

“Creating noise from data is easy; creating data from noise is
generative modeling”1.

This talk: Denoising Diffusion Probabilistic Models (DDPM)

• Derivations from [Ho et al., DDPM, NeurIPS 2020] and
[Sohl-Dickstein et al., Deep Unsupervised Learning using
Nonequilibrium Thermodynamics, ICML 2015]

• Based in part on Arash Vahdat’s CVPR 2022 tutorial

1Song et al., Score-Based Generative Modeling through Stochastic Differential
Equations, ICLR 2021

10

Denoising Diffusion Models

“Creating noise from data is easy; creating data from noise is
generative modeling”2.

2Song et al., Score-Based Generative Modeling through Stochastic Differential
Equations, ICLR 2021

11

Denoising Diffusion Models

Have samples from an unknown data distribution q(x0)

12

Forward Process

Creating noise from data is easy:

• Choose an integer T (typically large) and a variance schedule βt

• βt is often a linear interpolation between β1 and βT

• Slowly make your data noisier over T steps

xt =
√

1 − βtxt−1 +
√
βtϵ ϵ ∼ N (0, I) (1)

q(xt | xt−1) = N (xt |
√

1 − βtxt−1, βtI) (2)

This defines the forward (diffusion) process:

t = 0 t = 50 t = 100 t = 200 t = 300

13

Forward Process

Forward Process:

q(xt | xt−1) = N (xt |
√

1 − βtxt−1, βtI) (3)

• Gives you a joint distribution

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1) (4)

Similar to a latent variable model / VAE:

• Encoder: q
• Latent variable(s): x1:T

• Observed variable: x0

14

Forward Process

Forward Process:

q(xt | xt−1) = N (xt |
√

1 − βtxt−1, βtI) (5)

Cheap to sample at any time t. Set γt =
∏t

s=1(1 − βs). Then:

xt =
√
γtx0 +

√
1 − γtϵ ϵ ∼ N (0, I) (6)

q(xt | x0) = N (xt |
√
γtx0, (1 − γt)I) (7)

Proof (sketch): Write out the densities and compute.

• Note that for large t, q(xt | x0) ≈ N (0, I)

t = 0 t = 50 t = 100 t = 200 t = 300

15

Denoising Diffusion Models

“Creating noise from data is easy; creating data from noise is
generative modeling”3.

3Song et al., Score-Based Generative Modeling through Stochastic Differential
Equations, ICLR 2021

16

Reverse Process

Generate data by reversing the diffusion process

• Sample xT ∼ N (0, I)
• Iteratively sample

xt−1 ∼ q(xt−1 | xt) t = T,T − 1, . . . , 1 (8)

17

Reverse Process

Generate data by reversing the diffusion process

• Sample xT ∼ N (0, I)
• Iteratively sample

xt−1 ∼ q(xt−1 | xt) t = T,T − 1, . . . , 1 (9)

• Problem:
q(xt−1 | xt) =

q(xt | xt−1)q(xt−1)

q(xt)
(10)

• Know forward transitions, but marginals are intractable
• Variational approximation:

q(xt−1 | xt) ≈ pθ(xt−1 | xt) (11)
= N (xt−1 | µθ(xt, t),Σθ(xt, t)) (12)

18

Reverse Process

Variational approximation:

q(xt−1 | xt) ≈ pθ(xt−1 | xt) (13)
= N (xt−1 | µθ(xt, t),Σθ(xt, t)) (14)

How can we train such a model?

• Want to maximize the model likelihood pθ(x0)

• Can think of pθ(xt−1 | xt) as the decoder in a VAE

Figure 8: Image credit: Calvin Luo 19

Loss Analysis

The usual ELBO (treating x1:T as latents) is

log pθ(x0) ≥ Ex1:T∼q(−|x0)

[
log

pθ(x0, x1:T)

q(x1:T | x0)

]
(15)

= Ex1:T∼q(−|x0) [log pθ(x0 | x1)]− KL [q(x1:T | x0) || pθ(x1:T)]

Let’s analyze this to get something we can compute

Reminder: KL is the Kullback-Liebler divergence; a “distance”
between probability distributions

KL [q(x) || p(x)] =
∫ q(x)

p(x)q(x)dx (16)

20

KL Chain Rule

Chain rule for the KL divergence:

KL [p(x, y) | q(x, y)] = KL [p(x) || q(x)] + Ex∼p(x)KL [p(y|x) || q(y|x)] (17)

Proof (sketch):

Decompose the joint distributions into a product of marginal and
conditional distributions. Plug into the definition of the KL
divergence and compute.

21

KL Chain Rule

Chain rule for KL divergences:

KL [p(x, y) | q(x, y)] = KL [p(x) || q(x)] + Ex∼p(x)KL [p(y|x) || q(y|x)] (18)

Apply to the chain rule to condition on xT:

log pθ(x0)

≥ Eq [log qθ(x0 | x1)]− KL [q(x1:T | x0) || pθ(x1:T)]

= Eq [log qθ(x0 | x1)]− KL [q(xT | x0) || pθ(xT)]

−EqKL [q(x1:T−1 | x0, xT) || pθ(x1:T−1 | xT)]

22

KL Chain Rule

Chain rule for KL divergences:

KL [p(x, y) | q(x, y)] = KL [p(x) || q(x)] + Ex∼p(x)KL [p(y|x) || q(y|x)] (19)

Apply to the chain rule to condition on xT:

log pθ(x0)

≥ Eq [log qθ(x0 | x1)]− KL [q(x1:T | x0) || pθ(x1:T)]

= Eq [log qθ(x0 | x1)]− KL [q(xT | x0) || pθ(xT)]

−EqKL [q(x1:T−1 | x0, xT) || pθ(x1:T−1 | xT)]

Repeat to condition on xT−1, xT−2, . . . , x1:

log pθ(x0) ≥Eq

[
log pθ(x0 | x1)−

KL [q(xT | x0) || pθ(xT)]−
T∑

t=2
KL [q(xt−1 | xt, x0) || pθ(xt−1 | xt)]

]
23

Loss Analysis

Three types of terms appear in the loss:

LT := KL [q(xT | x0) || pθ(xT)] (20)

L0 := Eq [log pθ(x0 | x1)] (21)

Lt−1 := EqKL [q(xt−1 | xt, x0) || pθ(xt−1 | xt)] (22)

24

Loss Analysis

LT := KL [q(xT | x0) || pθ(xT)] (23)

This measures the error at the end of the forward process, i.e. t = T.

• We typically choose pθ(xT) = N (0, I)
• Note q(xT | x0) ≈ N (0, I) for T sufficiently large
• Hence, LT is negligible and is typically ignored during training

25

Loss Analysis

L0 := Eq [log pθ(x0 | x1)] (24)

Measures the error at the end of the backwards process, i.e. t = 0.

• This is essentially a decoder log-likelihood
• Analogous to the reconstruction term in a VAE
• Cheap to compute

26

Loss Analysis

Lt−1 := EqKL [q(xt−1 | xt, x0) || pθ(xt−1 | xt)] (25)

Measures the error between the at intermediate steps between

1. The model’s reverse transitions pθ(xt−1 | xt)

2. The true reverse transitions q(xt−1 | xt, x0)

Important note: the true reverse transitions are conditioned on x0

• q(xt−1 | xt) is intractible
• ... but we’ll see q(xt−1 | xt, x0) is known!

27

Loss Analysis

By Bayes’ rule:

q(xt−1 | xt, x0) =
q(xt | xt−1, x0)q(xt−1 | x0)

q(xt | x0)
(26)

The right-hand side only involves the forward process

• ... so everything is known and Gaussian

After a tedious but straightforward calculation:

q(xt−1 | xt, x0) = N (µq(xt, x0), σ
2
q(t) I) (27)

µq(xt, x0) =

√
γt−1βt

1 − γt
x0 +

√
1 − βt(1 − γt−1)

1 − γt
xt σ2

q(t) =
1 − γt−1
1 − γt

βt

28

Model Parametrization

The story so far:

Lt−1 := EqKL [q(xt−1 | xt, x0) || pθ(xt−1 | xt)] (28)

q(xt−1 | xt, x0) = N (µq(xt, x0), σ
2
q(t) I) (29)

How should we parametrize the model pθ(xt−1 | xt)?

29

Model Parametrization

The story so far:

Lt−1 := EqKL [q(xt−1 | xt, x0) || pθ(xt−1 | xt)] (30)

q(xt−1 | xt, x0) = N (µq(xt, x0), σ
2
q(t) I) (31)

How should we parametrize the model pθ(xt−1 | xt)?

Since q(xt−1 | xt, x0) is Gaussian, let’s assume pθ(xt−1 | xt) is too:

pθ(xt−1 | xt) = N (µθ(xt, t),Σθ(xt, t)) (32)

• Now, we parametrize µθ(xt, t) and Σθ(xt, t)

30

Model Parametrization

Lt−1 := EqKL [q(xt−1 | xt, x0) || pθ(xt−1 | xt)] (33)

q(xt−1 | xt, x0) = N
(
µq(xt, x0), σ

2
q(t) I

)
(34)

pθ(xt−1 | xt) = N (µθ(xt, t),Σθ(xt, t)) (35)

Let’s make our lives easy and set

Σθ(xt, t) = σq(t)2I (36)

The KL between Gaussians has a closed form:

Lt−1 = Eq

[
1

2σ2
q(t)

||µθ(xt, t)− µq(xt, x0)||22
]
+ C (37)

31

Model Parametrization

Lt−1 = Eq

[
1

2σ2
q(t)

[
||µθ(xt, t)− µq(xt, x0)||22

]]
(38)

Variational mean µθ needs to predict the denoised mean µq.

How should we parametrize µθ(xt, t)?

• Most straightforward: just have network try to predict µq, since
this is known

• Can we do better?

32

Model Parametrization: Data Prediction

Lt−1 = Eq

[
1

2σ2
q(t)

[
||µθ(xt, t)− µq(xt, x0)||22

]]
(39)

Idea: we can exploit the structure of µq to obtain a better
parametrization

µq(xt, x0) =

√
γt−1βt

1 − γt
x0 +

√
1 − βt(1 − γt−1)

1 − γt
xt

Since the model has xt as input, we can parametrize via

µθ(xt, t) =
√
γt−1βt

1 − γt
xθ(xt, t) +

√
1 − βt(1 − γt−1)

1 − γt
xt (40)

i.e. network needs to predict noise-free input from xt:

xθ(xt, t) ≈ x0 (41)

33

Model Parametrization: Data Prediction

Lt−1 = Eq

[
1

2σ2
q(t)

[
||µθ(xt, t)− µq(xt, x0)||22

]]
(42)

µθ(xt, t) =
√
γt−1βt

1 − γt
xθ(xt, t) +

√
1 − βt(1 − γt−1)

1 − γt
xt (43)

xθ(xt, t) ≈ x0 (44)

Loss simplifies to

Lt−1 = Eq
[
Ct||xθ(xt, t)− x0||2

]
(45)

Ct =
1

2σ2
q(t)

γt−1β
2
t

(1 − γt)2 (46)

34

Model Parametrization: Noise Prediction

Lt−1 = Eq

[
1

2σ2
q(t)

[
||µθ(xt, t)− µq(xt, x0)||22

]]
(47)

An alternative parametrization

Since xt =
√
γtx0 +

√
1 − γtϵ for ϵ ∼ N (0, I):

µq(xt, x0) =

√
γt−1βt

1 − γt
x0 +

√
1 − βt(1 − γt−1)

1 − γt
xt

=
1√

1 − βt

(
xt −

βt√
1 − γt

ϵ

)
We can thus parametrize µθ as:

µθ(xt, t) =
1√

1 − βt

(
xt −

βt√
1 − γt

ϵθ(xt, t)
)

(48)

i.e. network tries to predict noise added to xt

ϵθ(xt, t) ≈ ϵ (49)
35

Denoising Diffusion Models: Noise Prediction

This parametrization results in a fairly simple and interpretable loss:

Lt−1 = Eϵ

[
Ct||ϵ− ϵθ(xt, t)||2

]
ϵ ∼ N (0, I) (50)

• Ct is a time-dependent constant; often dropped during training
for simplicity

Ct =
β2

t
2σ2

q(t)(1 − βt)(1 − γt)
(51)

• ϵθ(xt, t) is a network that tries to predict the added noise from
the noisy input – i.e. it is denoising

36

Denoising Diffusion Models: Training

Putting everything together:

L = Eq

[
log pθ(x0 | x1)−

T∑
t=2

CtEϵ||ϵ− ϵθ(xt, t)||2
]

(52)

• Ct is ignored
• Likelihood term is assumed to be Gaussian
• Recall xt =

√
γtx0 +

√
1 − γtϵ – pseudocode uses αt = γt

37

Denoising Diffusion Models: Sampling

Sampling:

µθ(xt, t) =
1√

1 − βt

(
xt −

βt√
1 − γt

ϵθ(xt, t)
)

(53)

pθ(xt−1 | xt) = N (µθ(xt, t), σ2
q(t)I) (54)

• Notation: αt = 1 − βt and σt = σq(t) 38

Denoising Diffusion Models

Some practical details:

• For images, ϵθ(xt, t) is typically implemented via the U-Net
architecture

• Time input t is discrete integer – usually handled via (learnable)
embeddings

• Can tune forward process: number of steps T, variance schedule
βt

Figure 9: Image credit: Arash Vahdat

39

Denoising Diffusion Models

Some samples from a trained DDPM model

Figure 10: [Ho et al., DDPM, 2020]
40

Conditional Diffusion Models

41

Conditional Diffusion Models

Conditioning information c, e.g.

• text (embedding)
• class label
• image(s)

Condition reverse chain on c:

pθ(x0:T | c) = pθ(xT)

T∏
t=1

pθ(xt−1 | xt, c) (55)

Loss can be derived in an analogous way:

log pθ(x0|c) ≥Eq

[
log pθ(x0 | x1, c)− KL [q(xT | x0) || pθ(xT)]

−
T∑

t=2
KL [q(xt−1 | xt, x0) || pθ(xt−1 | xt, c)]

]

42

Conditional Diffusion Models

Condition reverse chain on c:

pθ(x0:T | c) = pθ(xT)

T∏
t=1

pθ(xt−1 | xt, c) (56)

Loss can be derived in an analogous way:

log pθ(x0|c) ≥Eq

[
log pθ(x0 | x1, c)− KL [q(xT | x0) || pθ(xT)]

−
T∑

t=2
KL [q(xt−1 | xt, x0) || pθ(xt−1 | xt, c)]

]

• Basic idea still holds for conditional models
• Challenge: building architectures to best make use of c

43

Conditional Diffusion Models

How do you model
pθ(xt−1 | xt, c)? (57)

Some examples:

• Scalar c (e.g. class labels, time): pass through small MLP; mix
with hidden layers

Figure 11: Image credit: Arash Vahdat

44

Conditional Diffusion Models

How do you model
pθ(xt−1 | xt, c)? (58)

Some examples:

• Image c: concatenate channel-wise with xt
• Can be easily combined with scalar information

Figure 12: [Saharia et al., Image Super-Resolution via Iterative Refinement, 2021]

45

Conditional Diffusion Models

Case study: Imagen text-to-image model

• Text prompt embedded into a latent space (via T5)
• Cascaded image-to-image super resolution models

Figure 13: [Saharia et al., Photorealistic Text-to-Image Diffusion Models..., 2022]] 46

Connections to Score-Based Models

47

Score-Based Models

Tweeedie’s Formula (1956):

z ∼ N (µz,Σz) (59)

E[µz | z] = z +Σz∇z log p(z) (60)

Given a sample z from a Gaussian, our best guess for the mean is to
perturb z in the direction that most increases the log density.

• The gradient ∇x log p(z) is called the score of p(z)

48

Score-Based Models

Tweeedie’s Formula:

z ∼ N (µz,Σz) (61)

E[µz | z] = z +Σz∇z log p(z) (62)

Suppose we have a noisy measurement

z = x + ϵ ϵ ∼ N (0,Σ) (63)

Then Tweedie’s formula says:

E[x | z] =
∫

xp(x | z)dx = z +Σ∇x log p(z) (64)

If you know ∇z log p(z), you don’t need to know p(x | z)!

49

Score-Based Models

Tweeedie’s Formula:

z ∼ N (µz,Σz) =⇒ E[µz | z] = z +Σz∇z log p(z) (65)

Recall our forward process:

q(xt | x0) = N (xt |
√
γtx0, (1 − γt)I) (66)

xt =
√
γtx0 +

√
1 − γtϵ ϵ ∼ N (0, I) (67)

By Tweedie’s formula:

E[x0 | xt] =
1

√
γt

(
xt +

√
1 − γt∇ log p(xt)

)
(68)

50

Score-Based Models

Recall our setup:

Lt−1 := EqKL [q(xt−1 | xt, x0) || pθ(xt−1 | xt)] (69)
q(xt−1 | xt, x0) = N (µq(xt, x0), σ

2
q(t) I) (70)

pθ(xt−1 | xt) = N (µθ(xt, t),Σθ(xt, t)) (71)

By Tweedie’s formula (plug in for x0):

µq(xt, x0) =

√
γt−1βt

1 − γt
x0 +

√
1 − βt(1 − γt−1)

1 − γt
xt (72)

=
1√

1 − βt
xt +

βt√
1 − βt

∇ log p(xt) (73)

Thus we have an alternative parametrization:

µθ(xt, t) =
1√

1 − βt
xt +

βt√
1 − βt

sθ(xt, t) (74)

sθ(xt, t) ≈ ∇ log p(xt) (75)
51

Score-Based Models

Further connections:

sθ(xt, t) ≈ ∇ log p(xt) =

∫
q(x0)∇ log q(xt | x0)dx0 (76)

=

∫
q(x0)

(
−xt − x0

1 − γt

)
dx0 (77)

= −Ex0

(
ϵ√

1 − γt

)
ϵ ∼ N (0, 1) (78)

= − ϵ√
1 − γt

(79)

That is:
sθ(xt, t) ≈ − 1√

1 − γt
ϵθ(xt, t) (80)

Predicting the score is the same (up to a time-dependent constant) as
predicting the noise

52

Score-Based Models

Thus an alternative form of the loss is:

Lt−1 = Eq
[
C′

t||sθ(xt, t)−∇ log p(xt)||22
]

(81)

i.e. we can predict the score rather than the added noise

Note that
∇ log p(xt) =

∫
q(x0)∇p(xt | x0)x0 (82)

is intractable as written

• Requires specialized techniques for score-matching
• Beyond the scope of this lecture

53

Conditional Diffusion Models

Condition reverse chain on c:

pθ(x0:T | c) = pθ(xT)

T∏
t=1

pθ(xt−1 | xt, c) (83)

Loss can be derived in an analogous way:

log pθ(x0|c) ≥Eq

[
log pθ(x0 | x1, c)− KL [q(xT | x0) || pθ(xT)]

−
T∑

t=2
KL [q(xt−1 | xt, x0) || pθ(xt−1 | xt, c)]

]

• Basic idea still holds for conditional models
• Challenge: building architectures to best make use of c
• Score-based models can be conditioned via guidance

54

Conclusions and Summary

55

Conclusions and Summary

Diffusion Generative Models are a class of deep generative models
that generate data by iterative denoising.

• Can be applied to a wide array of conditional and unconditional
generation tasks

• The forward process is a Markov chain that turns our data into
noise

• We learn to undo this procedure via a variational approximation
to the time-reversed chain

56

Conclusions and Summary

Diffusion Generative Models are a class of deep generative models
that generate data by iterative denoising.

There are many complementary perspectives on diffusion models:

• Hierarchical VAEs; Latent variable models
• From xt, predicting:

• Denoised input x0

• Added noise ϵ

• Score ∇ log p(xt)

57

Conclusions and Summary

Not covered today:

• A lot!
• Continuous-time perspectives via Stochastic Differential

Equations (SDEs)
• Improvements to forward process [Kingma et al., Variational

Diffusion Models, NeurIPS 2021]
• Techniques to speed up generation [Song et al., Denoising

Diffusion Implicit Models, ICLR 2021]
• Conditional generation methods [Ho et al., Classifier Free

Guidance, 2022]

58

Additional Resources

• CVPR 2022 tutorial:
cvpr2022-tutorial-diffusion-models.github.io

• Calvin Luo’s blog: calvinyluo.com/2022/08/26/
diffusion-tutorial.html

• Yang Song’s blog: yang-song.net/blog/2021/score/

59

cvpr2022-tutorial-diffusion-models.github.io
calvinyluo.com/2022/08/26/diffusion-tutorial.html
calvinyluo.com/2022/08/26/diffusion-tutorial.html
yang-song.net/blog/2021/score/

Thanks!

gavin.k@uci.edu

gavinkerrigan.github.io

60

	Denoising Diffusion Models
	Conditional Diffusion Models
	Connections to Score-Based Models
	Conclusions and Summary

