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Introduction

Diffusion Generative Models are a class of deep generative models
that generate data by iterative denoising.



Introduction

Unconditional generation: Images

Figure 1: [Dhariwal and Nichol, Diffusion Models Beat GANs on Image Synthesis,
NeurIPS 2021]



Introduction

Unconditional generation: Point clouds

Figure 2: [Cai et al., Learning Gradient Fields for Shape Generation, ECCV 2020]



Introduction

Conditional generation: Text — Image

« e.g. DALLE-2, Imagen, Stable Diffusion, etc.

Figure 3: “An oil painting of a cat wearing an ornate wizard hat and robe”

openai.com/dall-e-2



Introduction

Conditional generation: Image — Image

e e.g. Super-resolution

Input SR3 output Reference

Figure J: [Saharia et al., Image Super-Resolution via Iterative Refinement, ICCV
2021]



Introduction

Conditional generation: Image — Image

Precipitation forecasting

geopotential land-sea mask 100m wind speed

[Asperti et al., 2023]



Introduction

Conditional generation: Graphs — 3D Molecules

Reference

Figure 6: [Xu et al., GeoDiff: A Geometric Diffusion Model for Molecular
Conformation Generation, ICLR 2022]



Introduction

Conditional generation: Graphs — 3D Molecules

ligand &
protein

DIFFDOCK

reverse diffusion over
translations, rotations and torsions

Figure 7: [Corso et al., DiffDock: Diffusion Steps, Twists, and Turns for Molecular
Docking, ICLR 2023]



Denoising Diffusion Models



Denoising Diffusion Models

“Creating noise from data is easy; creating data from noise is

generative modeling™!.

This talk: Denoising Diffusion Probabilistic Models (DDPM)

 Derivations from [Ho et al., DDPM, NeurIPS 2020] and
[Sohl-Dickstein et al., Deep Unsupervised Learning using
Nonequilibrium Thermodynamics, ICML 2015]

« Based in part on Arash Vahdat’s CVPR 2022 tutorial

1Song et al., Score-Based Generative Modeling through Stochastic Differential
Equations, ICLR 2021
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Denoising Diffusion Models

“Creating noise from data is easy; creating data from noise is

generative modeling”?.

2Song et al., Score-Based Generative Modeling through Stochastic Differential
Equations, ICLR 2021

11



Denoising Diffusion Models

Have samples from an unknown data distribution g¢(z)
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Forward Process

Creating noise from data is easy:

o Choose an integer T (typically large) and a variance schedule j;
o [ is often a linear interpolation between 81 and S

o Slowly make your data noisier over T steps

Ty = \/1*6t$t_1+\/a€ ENN(O,I) (1)
Q@ | 2—1) = N (2 | /1 = Beay—1, Bed) (2)

This defines the forward (diffusion) process:

t=10 t =/50 t=[100/
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Forward Process

Forward Process:

gz | m—1) = Nz | V1 = Bewea, Bid)

o Gives you a joint distribution

T

q(z17 | 20) = H (@t | w—1)

=1
Similar to a latent variable model / VAE:
o Encoder: ¢

« Latent variable(s): z1.7

o Observed variable: xy
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Forward Process

Forward Process:

(l"f | Tt— 1 It | AV 1- BfIf 17B1‘ (5)

Cheap to sample at any time t. Set v; = H 1 (1= Bs). Then:

T = /720 + /1 — i€ e~ N(0,1) (6)
(e | 20) = N (2 | V720, (1= ye)1) (7)

Proof (sketch): Write out the densities and compute.
« Note that for large t, q(z; | m) =~ N (0, ])

t=10 t =/50 t =100 t=200.,




Denoising Diffusion Models

“Creating noise from data is easy; creating data from noise is

generative Illodelillg”3.

3Song et al., Score-Based Generative Modeling through Stochastic Differential
Equations, ICLR 2021

16



Reverse Process

Generate data by reversing the diffusion process

+ Sample z1 ~ N(0, ])

o Iteratively sample

T~ q(z-1 | m) t=T17,T-1,...,1
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Reverse Process

Generate data by reversing the diffusion process

Sample zp ~ N(0, ])

« Iteratively sample

L1 ~ (@1 | @) t=T,T—1,...,1
« Problem: ’ ;
gz | z—1)q(2e—1)
q(zt)

o Know forward transitions, but marginals are intractable

Q(It—l | It) =

« Variational approximation:

Q(ﬂftq | ﬁft) ~ p@(xtfl | fEt)
= N(z—1 | po(ze, t), Xo(, 1))
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Reverse Process

Variational approximation:
Q(«thl | «Tt) ~ pe(mtfl \ »Tt) (13)
- N(xtfl ‘ M@(wta t)7 Ze(mh t)) (14)
How can we train such a model?

o Want to maximize the model likelihood pg(zo)
o+ Can think of py(z;—1 | ;) as the decoder in a VAE

p(@i—1]x¢) P(@¢|Tis1) p(xr—1|xT)

q(@e|Te—1) q(weir|ay) q(xr|rr_1)

Figure 8: Image credit: Calvin Luo
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Loss Analysis

The usual ELBO (treating z;.7 as latents) is

Pe(l’o,l‘LT)] (15)

q(z1.7 | 70)
= EZLTNQ(*\JCO) [IOgPQ(xO | ‘Tl)] — KL [q(a:l:T ‘ xO) || p@(xl:T)]

log po(70) > Eqy pmg(—|a0) {log

Let’s analyze this to get something we can compute

Reminder: KL is the Kullback-Liebler divergence; a “distance”
between probability distributions

LlaGo) || o) = [ ngj)qumx (16)
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KL Chain Rule

Chain rule for the KL divergence:

KLp(z, y) | a(z, y)] = KL[p(2) || ¢(2)] + Eonp(a) KL [p(y]2) || q(yl2)] (17)

Proof (sketch):

Decompose the joint distributions into a product of marginal and
conditional distributions. Plug into the definition of the KL
divergence and compute.
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KL Chain Rule

Chain rule for KLi divergences:
KL[p(z,9) | a(z,y)] = KL[p() || ¢(2)] + Eonp KL [p(3]2) || q(yl2)] (18)
Apply to the chain rule to condition on z7:

log po(20)
>E,[log go(zo | 21)] — KL[g(z1.7 | 20) || po(z1.7)]
=E, [log go(xo | 1)] — KL [g(z7 | 20) || po(z7)]

7Eq|<L[Q(l’1:T71 ‘ ZL’(),:L‘T) H p(f(l‘l:Tfl | ‘LT”
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KL Chain Rule

Chain rule for KL divergences:
KL[p(z,9) | q(z,9)] = KL[p() || ¢(2)] + Eonp() KL [p(3]2) |] a(yl2)] (19)
Apply to the chain rule to condition on z7:
log po (o)
> E, [log go(ao | 21)] — KL [g(21.7 | 20) || po(1.7)]
= Eq[log go(z0 | 21)] — KL[g(z7 | 20) || po(z7)]
—EKL[g(z1:7-1 | 70, 27) || Po(T1:7-1 | 27)]

Repeat to condition on xp_1,x7_9,...,21:

log pg(z0) >Eq4 | log pe(zo | 21)—

T

KL [a(zr | a0) [ po(er)] = Y KLla(zeo1 | 21 0) || polzi—1 | @)
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Loss Analysis

Three types of terms appear in the loss:

Ly := KL{g(er | 20) || po(e7)]

Lo :=E, [log po(mo | 71)]

Lt—l = EqKI—[q(wt—l | .Z't,xo) || p@(xt—l ‘ xt)}
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Loss Analysis

Ly = KL[g(z7 | 70) || po(zT)] (23)

This measures the error at the end of the forward process, i.e. t= T.

o We typically choose pg(z1) = N (0, I)
« Note g(zr | 70) =~ N (0, 1) for T sufficiently large

« Hence, Lt is negligible and is typically ignored during training
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Loss Analysis

Lo :=E4[log po(wo | 71)] (24)

Measures the error at the end of the backwards process, i.e. t = 0.

« This is essentially a decoder log-likelihood
» Analogous to the reconstruction term in a VAE

» Cheap to compute
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Loss Analysis

L1 :=EKL[g(zi—1 | 7, 70) || polzi—1 | )] (25)

Measures the error between the at intermediate steps between

1. The model’s reverse transitions pp(z;—1 | 24)

2. The true reverse transitions g(x:— 1 | 4, 7p)
Important note: the true reverse transitions are conditioned on
o g(m—1 | ;) is intractible

o ... but we'll see g(w—1 | 24, 7p) is known!
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Loss Analysis

By Bayes’ rule:

q(fl?t | It—l,IO)Q(It—l \ Io)

T | xp, x9) = 26
e iCre | ) 2
The right-hand side only involves the forward process
o ... so everything is known and Gaussian
After a tedious but straightforward calculation:
Wit | 2 a0) = N (gl 20), 02(0) 1 (27)
v Yt—1P5¢ V1= 1— v 1— v
,LLq(ZI:t, {1}0) = T + Bt( il 1) Ty O'g(t) = i 1/8t
L= L= L=
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Model Parametrization

The story so far:

Ly i =EKL[g(zi—1 | 2, 20) || polze1 | 21)]

a1 | 2, 10) = N (uglae, 20), o5 () 1)

How should we parametrize the model py (2,1 | 24)?
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Model Parametrization

The story so far:

Li_1 :=EKL[g(zi—1 | 2, 20) || powe—1 | 21)] (30)
gl | a0) = N(pg(ze, 20), 05 () 1) (31)

How should we parametrize the model py(z; 1 | 2;)7?

Since ¢(z;—1 | 24, 79) is Gaussian, let’s assume py(z,1 | 2;) is too:

polre | 2e) = N (o (i, 1), Zo (22, 1)) (32)

o Now, we parametrize pg(z:, t) and Zg(zy, t)
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Model Parametrization

Ly :=EKL[g(z—1 | 2, 20) || po(we1 | 1))
Az | 20 10) = N (pg(me, 20), 0o (t) 1)
po(zi1 | m) =N (ug(ze, t), Xo(my, 1))

Let’s make our lives easy and set

Yo(wp, t) = 04(t)*1

The KL between Gaussians has a closed form:

1
Ly 1 =E, m”#e(% t) — pg(z, 70)| 3| + C
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Model Parametrization

1

)

Ly = ]Eq

(110 (2, 1) = pg(ae, w0)|13] (38)

Variational mean g needs to predict the denoised mean u,.

How should we parametrize pg (2, t)?

o Most straightforward: just have network try to predict ug4, since
this is known

o Can we do better?

32



Model Parametrization: Data Prediction

1
Liy=E, m [||N9(=Tta t) — Hq(l’t,Io)Hg]

Idea: we can exploit the structure of ;14 to obtain a better

parametrization

VB VIS B

Ha\Zt, Zp) =
Q(t ) 1= T—

Since the model has z; as input, we can parametrize via

V1B -

17’725 1*’725

i.e. network needs to predict noise-free input from xz;:

e (‘Z'ta t)

w24, t) = 10

VI—=PB(1— 'Yt—l)xt

(39)

(40)

(41)
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Model Parametrization: Data Prediction

1
L, =E, m (1o (e, t) — prq(ze, 70)|[3]

o (zp, t) = @ft To (e, 1) + \/1_7?(17: %_1):5,5

Loss simplifies to

Ly, = IEq [CtH:CG(xtv t) - x0|‘2]

1 v_1p7
203(15) (1 — ;)2

(45)

(46)
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Model Parametrization: Noise Prediction

L1 =E, 201“) (1110, ) — (e, 70) 12] (47)

An alternative parametrization
Since z; = /w0 + /1 — € for e ~ N(0, I):

V=15t V1= Bl —7i-1)
1= 1—7

/,Lq(xt,xo) Tt

1 B )
= —— | T — €
V1—P < ! V1=
We can thus parametrize pg as:

R A
paten) = s (= et ) “8)

i.e. network tries to predict noise added to z;

eg(z, t) ~ € (49)



Denoising Diffusion Models: Noise Prediction

This parametrization results in a fairly simple and interpretable loss:

Ly =E. [Cyl|e — eg(z0. 1)]]?] e~ N(0,1) (50)

o (}is a time-dependent constant; often dropped during training

for simplicity

52
= 52— A7) (51

o ¢eg(z, t) is a network that tries to predict the added noise from

the noisy input —i.e. it is denoising

36



Denoising Diffusion Models: Training

Putting everything together:

L=E, |logpy(zo | 21) E:CLEH6

Algorithm 1 Training

. repeat
x0 ~ ¢(

T’ll\t, l"l”ldlLI’lt descent step on
2 {-..V a;Xg + \.»-"'1 — (Y€, f__) H

>: until com-’crgcd

o (} is ignored

o Likelihood term is assumed to be Gaussian

o(z, 1) (52)

o Recall 7y = \/7:79 + +/1 — vs¢ — pseudocode uses @y = ¢ 87



Denoising Diffusion Models: Sampling

Sampling:

Algorithm 2 Sampling
: xr ~N(0,1)

I)ift > 1, elsez=0

1
2
3
4 xt1= = |x j.‘.=i._€3(:x-{- i])-}-mz
5: end for '

y: return Xg

« Notation: oy =1 — 8; and oy = 04(%)
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Denoising Diffusion Models

Some practical details:

o For images, €p(xt, 1) is typically implemented via the U-Net
architecture

+ Time input ¢ is discrete integer — usually handled via (learnable)
embeddings

o Can tune forward process: number of steps T, variance schedule

Be

ime Representation
Fully-connected
Layers

Figure 9: Image credit: Arash Vahdat
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Denoising Diffusion Models

Some samples from a trained DDPM model

Figure 10: [Ho et al., DDPM, 2020]
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Conditional Diffusion Models

41



Conditional Diffusion Models

Conditioning information ¢, e.g.

o text (embedding)
« class label

o image(s)

Condition reverse chain on c¢:

T
p(%T\CfP9$TH (ze-1 | 21, 0) (55)

Loss can be derived in an analogous way:

log po(z0]c) ZEq[Inge(xo |21, ¢) — KL[g(er | 20) || po(ar)]

T

- Z KL [g(zt—1 | 2t, 20) || Po(zi-1 | @1, €)]

t=2
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Conditional Diffusion Models

Condition reverse chain on c¢:

T
p(J:o:r\C—pexTH (-1 | 1, ¢) (56)

Loss can be derived in an analogous way:

log po a0/<) ZEq[bgPe(ﬂfa |21, ¢) — KL [a(ar | 20) | po (o)

T

— Z KL[g(ze—1 | 71, 20) || po (w1 | 24, )]

=

« Basic idea still holds for conditional models

o Challenge: building architectures to best make use of ¢
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Conditional Diffusion Models

How do you model
po(Te—1 | 21, €)? (57)

Some examples:

+ Scalar ¢ (e.g. class labels, time): pass through small MLP; mix
with hidden layers

ime Representation

Fully-connected
Layers

Figure 11: Image credit: Arash Vahdat
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Conditional Diffusion Models

How do you model
po(Te—1 | 21, €)? (58)

Some examples:

« Image c: concatenate channel-wise with x;
o Can be easily combined with scalar information

82,1024 82,1024

1282, 128 Ye-1

Figure 12: [Saharia et al., Image Super-Resolution via Iterative Refinement, 2021]



Conditional Diffusion Models

Case study: Imagen text-to-image model

o Text prompt embedded into a latent space (via T5)
» Cascaded image-to-image super resolution models

Text Embedding

x 1024 Image

Figure 13: [Saharia et al., Photorealistic Text-to-Image Diffusion Models..., 2022]]
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Connections to Score-Based Models
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Score-Based Models

Tweeedie’s Formula (1956):

zn~ N(me ¥.) (59)
Elps | 2l = 24+ 2,V log p(2) )

Given a sample z from a Gaussian, our best guess for the mean is to
perturb zin the direction that most increases the log density.

o« The gradient V,log p(z) is called the score of p(z)
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Score-Based Models

Tweeedie’s Formulas:

zn~ N(Nm %)
E[/U'z | Z] =z+X.;V.log p(z)

Suppose we have a noisy measurement

z2=z+e¢ e ~N(0,%)
Then Tweedie’s formula says:

Elz| 7 = /xp(x| 2)dr = z+ XV log p(2)

If you know V,log p(z), you don’t need to know p(z | z)!
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Score-Based Models

Tweeedie’s Formulas:

2~ N(pz,X,) = Elp. | 4 = 24+ 3.V, log p(2)
Recall our forward process:
g(xr | 20) = N (2 | vyeao, (L= 7)1)
2= /Yito + V1 —ve e~ N(0,])

By Tweedie’s formula:

Elz | @) = — (xt—|— V1 —Vlog p(x )

ﬂ
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Score-Based Models

Recall our setup:

L1 == EKL[g(zi-1 | 21, 70) || po(mi-1 | )]
Q@1 | 21, 70) = N (pglar, 1), 05(t) 1)
pg(il?,;l | It) = N(MH(xb t)’ 29($t7 t))

By Tweedie’s formula (plug in for xp):

Hq\Tt, Zo
Q(t ) 1= T—my

= ! b V log p()
V1 —5t \/1 — By

Thus we have an alternative parametrization:

1 Bt
V1—=35 V1= ﬂt
sz, t) = Vlog p(z)

It+

(Itv )

/Le(Itv t) =

Vb V=B

AAA
< N9 o
— o ©
NN AN

(72)

(73)



Score-Based Models

Further connections:

oz 1) ~ V log pla) = / d(20)V log a(z: | 70)d

— [ dta) (522 )

= _E,, <6> e~ N(0,1)

V31—t
€
VT
That is:
(21, t) L eo(xt, t)
$ ~ —
o\ Lt m O\ Lty

Predicting the score is the same (up to a time-dependent constant) as

predicting the noise



Score-Based Models

Thus an alternative form of the loss is:
Li1 =By [Cil|so(z, t) — Vlog p(x)][3] (81)

i.e. we can predict the score rather than the added noise
Note that
Viogp(a) = | ala)Vala | )y (52)

is intractable as written

« Requires specialized techniques for score-matching

« Beyond the scope of this lecture
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Conditional Diffusion Models

Condition reverse chain on c¢:

T
po(zo:7 | ©) —pemTH (ze—1 | ¢, €)

Loss can be derived in an analogous way:

log po /<) >Eq[10gpe($o |21, 6) — KL [a(ar | 20) || 7o o)

T

— Z KL[g(z—1 | 1, 70) || po(Ti-1 | 21, )]

=

« Basic idea still holds for conditional models
o Challenge: building architectures to best make use of ¢

» Score-based models can be conditioned via guidance

(83)



Conclusions and Summary
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Conclusions and Summary

Diffusion Generative Models are a class of deep generative models
that generate data by iterative denoising.

» Can be applied to a wide array of conditional and unconditional
generation tasks

o The forward process is a Markov chain that turns our data into
noise

o We learn to undo this procedure via a variational approximation
to the time-reversed chain
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Conclusions and Summary

Diffusion Generative Models are a class of deep generative models
that generate data by iterative denoising.

There are many complementary perspectives on diffusion models:

o Hierarchical VAEs; Latent variable models
o From z, predicting:

+ Denoised input o
+ Added noise €
« Score Vlog p(z)

57



Conclusions and Summary

Not covered today:

A lot!

Continuous-time perspectives via Stochastic Differential
Equations (SDEs)

Improvements to forward process [Kingma et al., Variational
Diffusion Models, NeurIPS 2021]

Techniques to speed up generation [Song et al., Denoising
Diffusion Implicit Models, ICLR 2021]

Conditional generation methods [Ho et al., Classifier Free
Guidance, 2022]
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Additional Resources

« CVPR 2022 tutorial:
cvpr2022-tutorial-diffusion-models.github.io

« Calvin Luo’s blog: calvinyluo.com/2022/08/26/
diffusion-tutorial.html

« Yang Song’s blog: yang-song.net/blog/2021/score/


cvpr2022-tutorial-diffusion-models.github.io
calvinyluo.com/2022/08/26/diffusion-tutorial.html
calvinyluo.com/2022/08/26/diffusion-tutorial.html
yang-song.net/blog/2021/score/

Thanks!
gavin.k@Quci.edu

gavinkerrigan.github.io

60



	Denoising Diffusion Models
	Conditional Diffusion Models
	Connections to Score-Based Models
	Conclusions and Summary

