Normalising Flows

Gavin Kerrigan 2025 November 25

gavin.kerrigan@stats.ox.ac.uk GavinKerrigan.github.io/teaching

Slides available here!

Unconditional generative models learn p(x) from data.

Unconditional generative models learn p(x) from data.

Common use cases:

1. Sampling

Given a collection of data, how can I learn to produce new data with similar properties?

Example: generating molecules

[Zhai 2025]

Unconditional generative models learn p(x) from data.

Common use cases:

1. Sampling

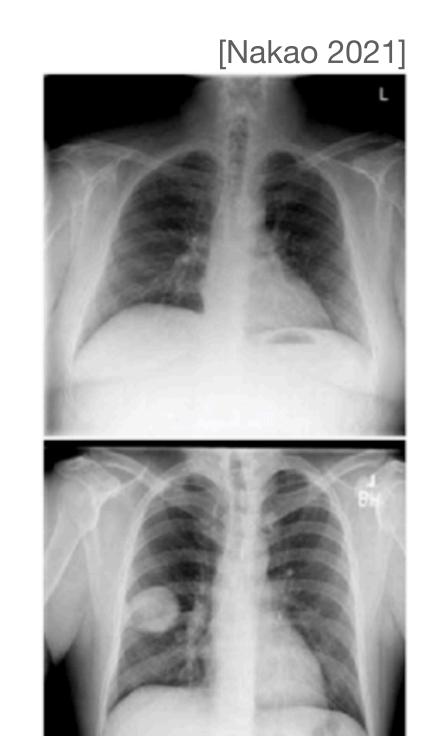
2. Anomaly detection

Given a collection of "normal" data, how can I detect if a new datapoint is "abnormal"?

Example: learn a density p(x) for normal images, and evaluate p(x') on a test image.

Normal

Abnormal



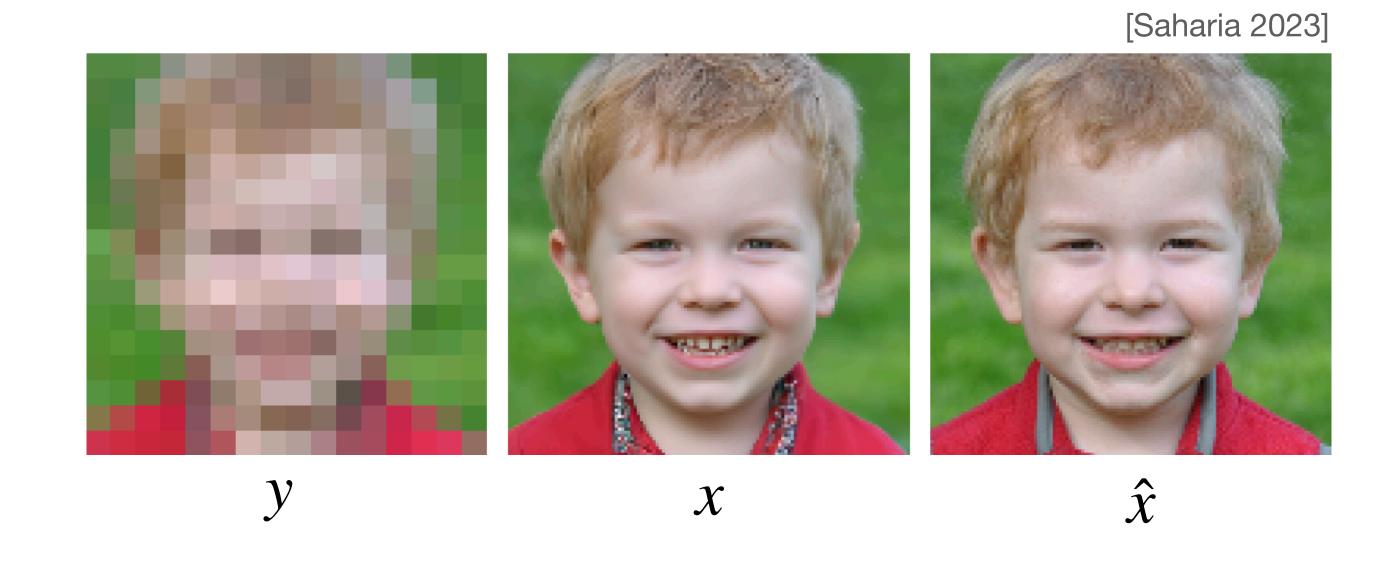
Unconditional generative models learn p(x) from data.

Common use cases:

- 1. Sampling
- 2. Anomaly detection
- 3. Inverse problems

Can I recover an underlying signal from a partial measurement?

Example: super-resolution, inpainting, ...



Flows in 2025?

Normalising flows are a class of generative models that learn p(x) explicitly.

... why are we still talking about them when we have diffusion?

1. Directly related to density estimation

Example uses: Anomaly detection, Bayesian inference, compression, ...

2. Relatively efficient

Can sample with a single forward pass Simple models can be effective for low-dimensional problems

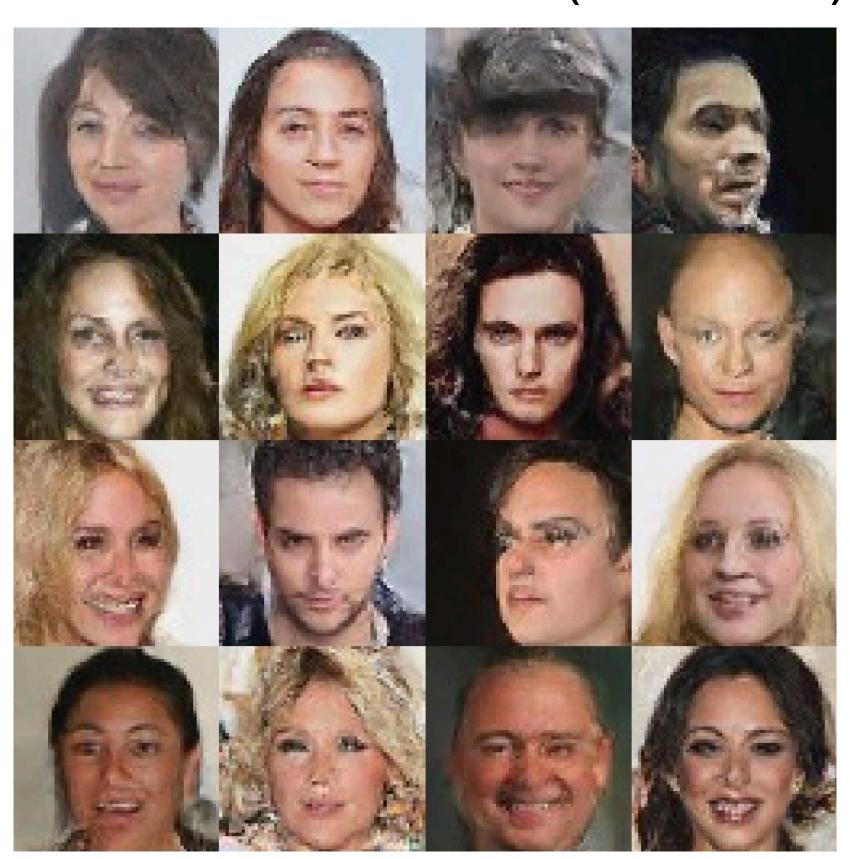
3. Diffusion is secretly a high-tech normalising flow

Important for understanding and historical context

Flows in 2025?

Folklore: "Normalising flows are good at density estimation but bad at sampling."

SOTA Flow in 2017 (RealNVP)



SOTA Flow in 2024 (TarFlow)

Chapter 1 Discrete-Time Flows

The Basic Idea

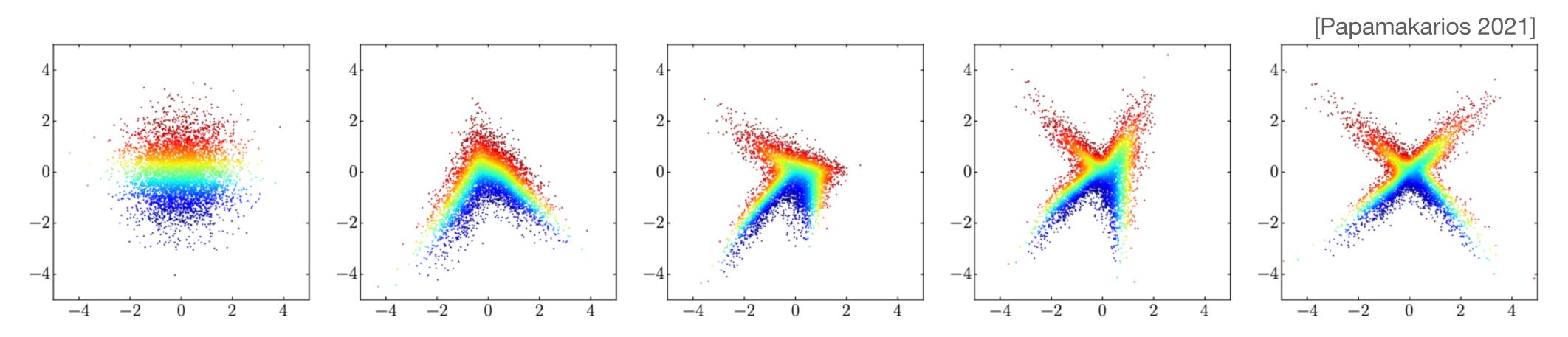
Setting the stage:

• All random variables are assumed to be continuous vectors in \mathbb{R}^d .

Question: how can we get a highly expressive p(x)?

Simple parametric distributions are not enough.

Key idea: transform samples from a simple distribution!



The Basic Idea

Choose a base distribution $p_0(x_0)$

Requirements:

- 1. Easy to sample $x_0 \sim p_0$
- 2. Easy to evaluate $p_0(x)$

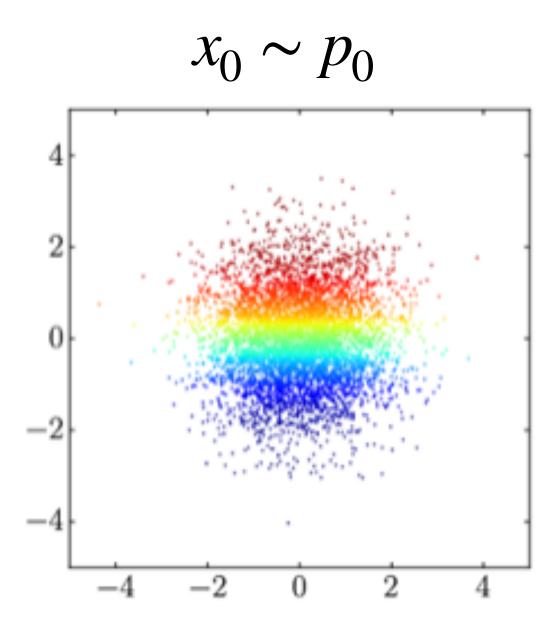
Most common choice: $p_0(x_0) = \mathcal{N}(x_0 \mid 0, I)$

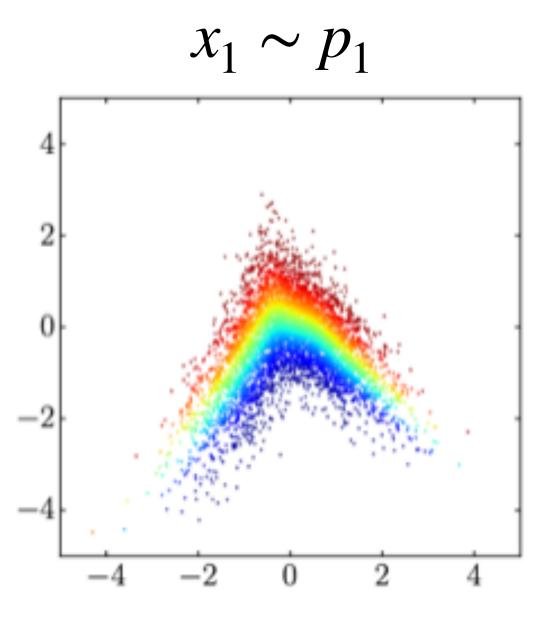
Choose a transformation $T: \mathbb{R}^d \to \mathbb{R}^d$

Given $x_0 \sim p_0$, we obtain a transformed version $x_1 = T(x_0)$

If I sample many x_0 's, I get a new distribution $p_1(x_1)$

Question: what is the density $p_1(x_1)$?





Pushforwards

$$x_0 \sim p_0 \qquad x_1 = T(x_0)$$

Question: what is the density $p_1(x_1)$?

Called the pushforward of p_0 along T, denoted $p_1 = T_\# p_0$

$$J_T(x_0) = \begin{bmatrix} \frac{\partial T^{(1)}}{\partial x_0^{(1)}} & \dots & \frac{\partial T^{(1)}}{\partial x_0^{(d)}} \\ \vdots & \ddots & \vdots \\ \frac{\partial T^{(d)}}{\partial x_0^{(1)}} & \dots & \frac{\partial T^{(d)}}{\partial x_0^{(d)}} \end{bmatrix}$$

Proposition [Change-of-Variables].

If T is invertible and T, T^{-1} are differentiable, then

$$\begin{split} p_1(x_1) &= p_0(x_0) |\det J_T(x_0)|^{-1} \quad \text{where} \quad x_0 = T^{-1}(x_1) \\ &= p_0 \left(T^{-1}(x_1) \right) |\det J_{T^{-1}}(x_1)| \end{split}$$

Intuition: normalise how likely the "source point" x_0 is by how much T stretches out the space

Diffeomorphisms

An invertible transformation T with T, T^{-1} differentiable is called a diffeomorphism

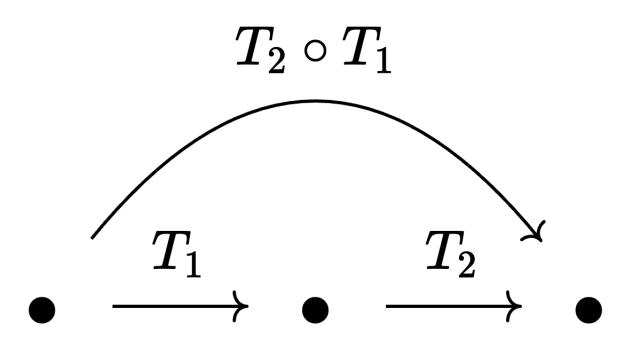
Diffeomorphisms are nice.

Sidebar: they set of diffeomorphisms on a space forms a group.

Given diffeomorphisms T_1, T_2 , their composition $T_2 \circ T_1$ is a diffeomorphism

Inverse:
$$(T_2 \circ T_1)^{-1} = T_1^{-1} \circ T_2^{-1}$$

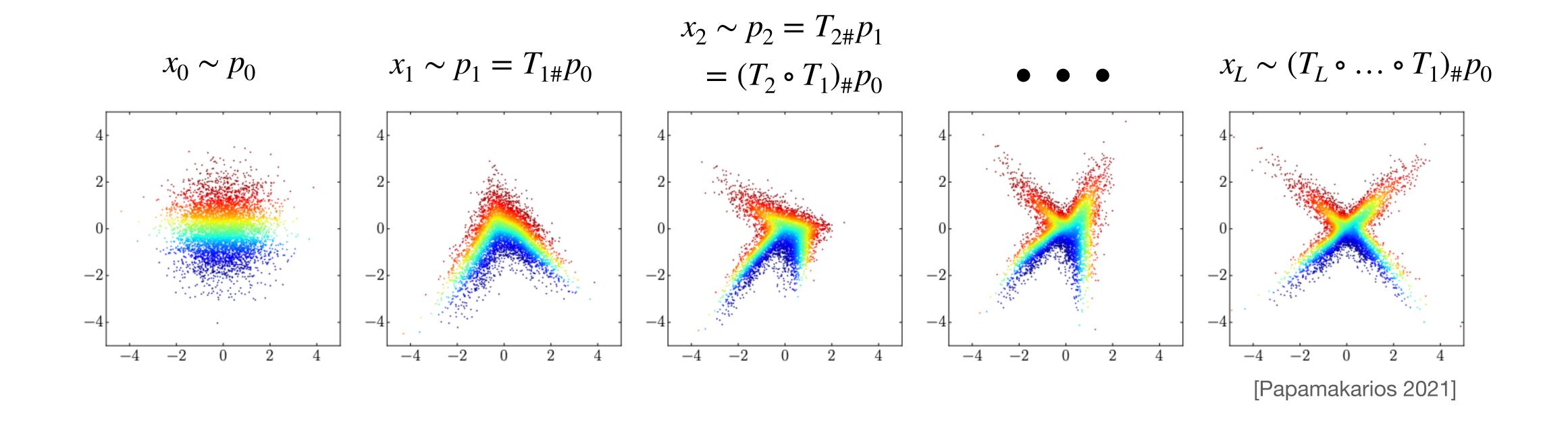
Jacobian:
$$\det J_{T_2 \circ T_1}(x) = \det J_{T_2}(T_1(x)) \cdot \det J_{T_1}(x)$$



Questions?

Diffeomorphisms

We can stack together many small transformations to get a big transformation. If each step is a diffeomorphism, we can compute the resulting density.



Have data samples $x^{(i)} \sim q(x)$ for i = 1, 2, ..., n

Choose a base distribution $p_0(x_0)$

Implement some diffeomorphisms $T_{k,\theta}: \mathbb{R}^d \to \mathbb{R}^d$

Typically: a specific kind layer (or block) of a neural network

Layer index k

heta represents all parameters (which differ across layers)

Overall transformation: full neural network, stacking each block

$$T_{\theta} = T_{K,\theta} \circ \dots \circ T_{2,\theta} \circ T_{1,\theta}$$

Defines a model distribution $p_{\theta} = T_{\theta \#} p_0$

Have:

data samples $x^{(i)} \sim q(x)$

$$diffeomorphism \qquad T_{\theta} = T_{K,\theta} \circ \dots \circ T_{2,\theta} \circ T_{1,\theta}$$

 $p_0(x_0)$ base distribution

model distribution $p_{\theta} = T_{\theta \#} p_0$

Goal: $p_{\theta}(x) \approx q(x)$

Let's minimise a discrepancy between $p_{\theta}(x)$ and q(x)

Almost always it will be the KL:

$$\mathcal{L}(\theta) = \mathsf{KL} \left[q(x) \mid p_{\theta}(x) \right]$$

Have:

data samples $\chi^{(i)} \sim q(\chi)$ $p_0(x_0)$

diffeomorphism $T_{\theta} = T_{K.\theta} \circ \dots \circ T_{2.\theta} \circ T_{1.\theta}$

model distribution $p_{\theta} = T_{\theta \#} p_0$

Goal: $p_{\theta}(x) \approx q(x)$

base distribution

Let's minimise a discrepancy between $p_{\theta}(x)$ and q(x)

Almost always it will be the KL:

$$\mathscr{L}(\theta) = \mathsf{KL}\left[q(x) \mid | p_{\theta}(x)\right] =_{+C} - \mathbb{E}_{q(x)}\left[\log p_{\theta}(x)\right]$$

Have:

data samples

$$x^{(i)} \sim q(x)$$

 $p_0(x_0)$ base distribution

diffeomorphism

$$T_{\theta} = T_{K,\theta} \circ \dots \circ T_{2,\theta} \circ T_{1,\theta}$$

model distribution $p_{\theta} = T_{\theta \#} p_0$

$$p_{\theta} = T_{\theta \#} p_0$$

Goal: $p_{\theta}(x) \approx q(x)$

Let's minimise a discrepancy between $p_{\theta}(x)$ and q(x)

Almost always it will be the KL:

$$\mathcal{L}(\theta) = \mathsf{KL} \left[q(x) \mid | p_{\theta}(x) \right] =_{+C} - \mathbb{E}_{q(x)} \left[\log p_{\theta}(x) \right]$$

$$=_{+C} - \mathbb{E}_{q(x)} \left[\log p_{\theta}(x) \right]$$

$$= - \mathbb{E}_{q(x)} \left[\log p_0 \left(T_{\theta}^{-1}(x) \right) + \log |\det J_{T_{\theta}^{-1}}(x)| \right]$$

Change-of-Variables:

$$p_{\theta}(x) = p_0(T_{\theta}^{-1}(x))|\det J_{T_{\theta}}^{-1}(x)|^{-1}$$

Have:

data samples

$$x^{(i)} \sim q(x)$$

base distribution

$$p_0(x_0)$$

diffeomorphism

$$T_{\theta} = T_{K,\theta} \circ \dots \circ T_{2,\theta} \circ T_{1,\theta}$$

model distribution $p_{\theta} = T_{\theta \#} p_0$

$$p_{\theta} = T_{\theta \#} p_0$$

Goal: $p_{\theta}(x) \approx q(x)$

Let's minimise a discrepancy between $p_{\theta}(x)$ and q(x)

Almost always it will be the KL:

$$\mathcal{L}(\theta) = \mathsf{KL} \left[q(x) \mid p_{\theta}(x) \right] =_{+C} - \mathbb{E}_{q(x)} \left[\log p_{\theta}(x) \right]$$

$$=_{+C} - \mathbb{E}_{q(x)} \left[\log p_{\theta}(x) \right]$$

$$= - \mathbb{E}_{q(x)} \left[\log p_0 \left(T_{\theta}^{-1}(x) \right) + \log \left| \det J_{T_{\theta}^{-1}}(x) \right| \right]$$

$$\approx -\frac{1}{n} \sum_{i=1}^{n} \log p_0 \left(T_{\theta}^{-1}(x^{(i)}) \right) + \log |\det J_{T_{\theta}^{-1}}(x^{(i)})|$$

Change-of-Variables:

$$p_{\theta}(x) = p_0(T_{\theta}^{-1}(x))|\det J_{T_{\theta}}^{-1}(x)|^{-1}$$

Monte Carlo estimate

Have:

data samples
$$\chi$$

$$x^{(i)} \sim q(x)$$

$$T_{\theta} = T_{K,\theta} \circ \dots \circ T_{2,\theta} \circ T_{1,\theta}$$

$$p_0(x_0)$$

model distribution
$$p_{\theta} = T_{\theta \#} p_0$$

Goal: Minimize

$$L(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log p_0 \left(T_{\theta}^{-1}(x^{(i)}) \right) + \log|\det J_{T_{\theta}^{-1}}(x^{(i)})|$$

To evaluate this:

- 1. Need samples $x^{(i)} \sim q(x)$, but not the value of $q(x^{(i)})$
- 2. T_{θ} must be a diffeomorphism (equivalently, each $T_{k,\theta}$)

Note: you don't need to be able to evaluate T_{θ} to train only to sample!

Practically:

3. Evaluate $T_{\theta}^{-1}(x)$ and $\det J_{T^{-1}}(x)$ efficiently

Have:

A density
$$q(x) = \frac{1}{Z}\tilde{q}(x)$$

$$p_0(x_0)$$

$$\mathbf{diffeomorphism} \qquad T_{\theta} = T_{K,\theta} \circ \dots \circ T_{2,\theta} \circ T_{1,\theta}$$

model distribution
$$p_{\theta} = T_{\theta \#} p_0$$

$$p_{\theta} = T_{\theta \#} p_0$$

Goal: draw samples $x \sim q(x)$

Example: Bayesian inference

$$q(\theta \mid z) = \frac{q(\theta)q(z \mid \theta)}{Z}$$

Posterior $q(\theta \mid z) = \frac{q(\theta)q(z \mid \theta)}{z}$ is known up to the normalising constant Z

Have:

A density
$$q(x) = \frac{1}{Z}\tilde{q}(x)$$

 $p_0(x_0)$ base distribution

$$\mathbf{diffeomorphism} \qquad T_{\theta} = T_{K,\theta} \circ \ldots \circ T_{2,\theta} \circ T_{1,\theta}$$

model distribution $p_{\theta} = T_{\theta \#} p_0$

nodel distribution
$$p_{ heta} = T_{ heta \#} p_0$$

$$\mathcal{J}(\theta) = \mathsf{KL} \left[p_{\theta}(x) \mid q(x) \right]$$

$$= \int \left[\log p_{\theta}(x) - \log q(x) \right] p_{\theta}(x) dx$$

Have:

A density
$$q(x) = \frac{1}{Z}\tilde{q}(x)$$

base distribution $p_0(x_0)$

 $T_{\theta} = T_{K,\theta} \circ \dots \circ T_{2,\theta} \circ T_{1,\theta}$ diffeomorphism

model distribution $p_{\theta} = T_{\theta \#} p_0$

$$\begin{split} \mathcal{J}(\theta) &= \mathsf{KL}\left[p_{\theta}(x) \mid \mid q(x)\right] \\ &= \int \left[\log p_{\theta}(x) - \log q(x)\right] p_{\theta}(x) dx \\ &= \left[\int \log p_{\theta}\left(T(x_0)\right) - \log q\left(T(x_0)\right)\right] p_{\theta}\left(T(x_0)\right) |\det J_T(x_0)| dx_0 \end{split}$$

Have:

A density
$$q(x) = \frac{1}{Z}\tilde{q}(x)$$

base distribution $p_0(x_0)$

 $\mathbf{diffeomorphism} \qquad T_{\theta} = T_{K,\theta} \circ \ldots \circ T_{2,\theta} \circ T_{1,\theta}$

model distribution $p_{\theta} = T_{\theta \#} p_0$

$$\begin{split} \mathcal{J}(\theta) &= \mathsf{KL}\left[p_{\theta}(x) \mid | \ q(x)\right] \\ &= \int \left[\log p_{\theta}(x) - \log q(x)\right] p_{\theta}(x) dx \\ &= \int \left[\log p_{\theta}\left(T(x_0)\right) - \log q\left(T(x_0)\right)\right] p_{\theta}\left(T(x_0)\right) |\det J_T(x_0)| dx_0 \\ &= \int \left[\log p_{\theta}\left(T(x_0)\right) - \log q\left(T(x_0)\right)\right] p_{\theta}\left(T(x_0)\right) |\det J_T(x_0)| dx_0 \end{split}$$
 Change-of-Variables:
$$p_{\theta}\left(T(x_0)\right) = p_0(x_0) |\det J_T(x_0)|^{-1} \\ &= \left[\left[\log p_0\left(x_0\right) - \log |\det J_T(x_0)| - \log q\left(T(x_0)\right)\right] p_0(x_0) |\det J_T(x_0)|^{-1} |\det J_T(x_0)| dx_0 \end{split}$$

Have:

A density
$$q(x) = \frac{1}{Z}\tilde{q}(x)$$

base distribution $p_0(x_0)$

$$\mathbf{diffeomorphism} \qquad T_{\theta} = T_{K,\theta} \circ \ldots \circ T_{2,\theta} \circ T_{1,\theta}$$

model distribution $p_{\theta} = T_{\theta \#} p_0$

$$\begin{split} \mathcal{J}(\theta) &= \mathsf{KL}\left[\left[p_{\theta}(x) \mid \mid q(x)\right]\right] \\ &= \int \left[\log p_{\theta}(x) - \log q(x)\right] p_{\theta}(x) dx \\ &= \int \left[\log p_{\theta}\left(T(x_{0})\right) - \log q\left(T(x_{0})\right)\right] p_{\theta}\left(T(x_{0})\right) |\det J_{T}(x_{0})| dx_{0} \\ &= \int \left[\log p_{\theta}\left(T(x_{0})\right) - \log q\left(T(x_{0})\right)\right] p_{\theta}\left(T(x_{0})\right) |\det J_{T}(x_{0})| dx_{0} \end{split} \qquad \qquad \text{Change-of-Variables:} \\ &= \int \left[\log p_{0}\left(x_{0}\right) - \log |\det J_{T}(x_{0})| - \log q\left(T(x_{0})\right)\right] p_{0}(x_{0}) |\det J_{T}(x_{0})|^{-1} |\det J_{T}(x_{0})| dx_{0} \\ &= \mathbb{E}_{p_{0}(x_{0})}\left[\log p_{0}(x_{0}) - \log \left|\det J_{T}(x_{0})\right| - \log q\left(T(x_{0})\right)\right] \end{split}$$

Have:

A density
$$q(x) = \frac{1}{Z}\tilde{q}(x)$$

 $p_0(x_0)$ base distribution

$$diffeomorphism \qquad T_{\theta} = T_{K,\theta} \circ \dots \circ T_{2,\theta} \circ T_{1,\theta}$$

model distribution $p_{\theta} = T_{\theta \#} p_0$

$$\begin{split} \mathcal{J}(\theta) &= \mathsf{KL}\left[p_{\theta}(x) \mid \mid q(x)\right] \\ &= \mathbb{E}_{p_0(x_0)}\bigg[\log p_0(x_0) - \log \left|\det J_T(x_0)\right| - \log q\left(T(x_0)\right)\bigg] \end{split}$$

Have:

A density
$$q(x) = \frac{1}{Z}\tilde{q}(x)$$

 $p_0(x_0)$ base distribution

 $\mathbf{diffeomorphism} \qquad T_{\theta} = T_{K.\theta} \circ \dots \circ T_{2.\theta} \circ T_{1.\theta}$

model distribution $p_{\theta} = T_{\theta \#} p_0$

$$p_{\theta} = T_{\theta \#} p_0$$

We can use the **Reverse KL** to derive a loss:

$$\begin{split} \mathcal{J}(\theta) &= \mathsf{KL}\left[p_{\theta}(x) \mid \mid q(x)\right] \\ &= \mathbb{E}_{p_{0}(x_{0})}\left[\left.\log p_{0}(x_{0})\right| - \log\left|\det J_{T}(x_{0})\right| - \log q\left(T(x_{0})\right)\right] \\ &=_{+C} - \mathbb{E}_{p_{0}(x_{0})}\left[\log|\det J_{T}(x_{0})| + \log \tilde{q}\left(T(x_{0})\right)\right] \end{split}$$

Since $\log q(x) = \log \tilde{q}(x) - Z$ and $p_0(x_0)$ does not depend on θ

Have:

A density
$$q(x) = \frac{1}{Z}\tilde{q}(x)$$

 $p_0(x_0)$ base distribution

 $T_{\theta} = T_{K,\theta} \circ \dots \circ T_{2,\theta} \circ T_{1,\theta}$ diffeomorphism

model distribution $p_{\theta} = T_{\theta \#} p_0$

$$\mathbf{n} \quad p_{\theta} = T_{\theta \#} p_0$$

We can use the **Reverse KL** to derive a loss:

$$\begin{split} \mathcal{J}(\theta) &= \mathsf{KL}\left[\left.p_{\theta}(x) \mid \mid q(x)\right.\right] \\ &= \mathbb{E}_{p_0(x_0)}\bigg[\left.\log p_0(x_0) - \log \left|\det J_T(x_0)\right| - \log q\left(T(x_0)\right)\right] \\ &=_{+C} - \mathbb{E}_{p_0(x_0)}\bigg[\log \left|\det J_T(x_0)\right| + \log \tilde{q}\left(T(x_0)\right)\bigg] \end{split} \qquad \text{Since } \log q(x) = \log \tilde{q}(x) - Z \text{ and } p_0(x_0) \text{ does not dependent of the properties of$$

$$\approx -\frac{1}{n} \sum_{i=1}^{n} \left[\log|\det J_T(x_0^{(i)})| + \log \tilde{q} \left(T(x_0^{(i)}) \right) \right]$$

and $p_0(x_0)$ does not depend on θ

Estimate from samples $x_0^{(i)} \sim p_0$

Have:

A density
$$q(x) = \frac{1}{Z}\tilde{q}(x)$$

 $p_0(x_0)$ base distribution

$$\mathbf{diffeomorphism} \qquad T_{\theta} = T_{K,\theta} \circ \dots \circ T_{2,\theta} \circ T_{1,\theta}$$

model distribution $p_{\theta} = T_{\theta \#} p_0$

$$p_{\theta} = T_{\theta \#} p_0$$

Goal: Minimize

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left[\log|\det J_{T}(x_{0}^{(i)})| + \log \tilde{q} \left(T(x_{0}^{(i)}) \right) \right]$$

To evaluate this:

- 1. Need the value $\tilde{q}(x)$, but not samples
- 2. T_{θ} must be a diffeomorphism (equivalently, each $T_{k,\theta}$)

Note: you don't need to be able to evaluate T_{θ}^{-1} to train

... but you do need it if you want to evaluate the model density.

Practically:

3. Evaluate $T_{\theta}(x)$ and $\det J_{T}(x)$ efficiently

Objective

Sample q(x)?

Forward KL

$$\mathcal{L}(\theta) = \mathsf{KL} \left[q(x) \mid | p_{\theta}(x) \right]$$

Reverse KL

$$\mathcal{J}(\theta) = \mathsf{KL}\left[p_{\theta}(x) \mid q(x)\right]$$

Obj	ecti	ive
	,	

Sample q(x)?

Evaluate $\tilde{q}(x)$?

Forward KL

 $\mathcal{L}(\theta) = \mathsf{KL}\left[q(x) \mid p_{\theta}(x)\right]$

$$\mathcal{J}(\theta) = \mathsf{KL} \left[p_{\theta}(x) \mid | q(x) \right]$$

Objective	Sample $q(x)$?	Evaluate $\tilde{q}(x)$?	Model Param.	
Forward KL $\mathcal{L}(\theta) = \text{KL}\left[q(x) \mid p_{\theta}(x) \right]$			T_{θ}^{-1}	
Reverse KL $\mathcal{J}(\theta) = \text{KL} \left[p_{\theta}(x) \mid q(x) \right]$	x)		$T_{ heta}$	

Objective	Sample $q(x)$?	Evaluate $\tilde{q}(x)$?	Model Param.	Use Case (Without inverting model)
Forward KL $\mathcal{L}(\theta) = \text{KL}\left[q(x) \mid p_{\theta}(x)\right]$			T_{θ}^{-1}	Density Estimator
Reverse KL $\mathcal{J}(\theta) = \text{KL} \left[p_{\theta}(x) \mid q(x) \right]$	x)]		$T_{ heta}$	Sampler

Questions?

Practicalities

We will focus on implementing T_{θ} — everything holds for the other case.

Goal: Minimize
$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left[\log|\det J_T(x_0^{(i)})| + \log \tilde{q} \left(T(x_0^{(i)}) \right) \right]$$

Requirements on $T_{k,\theta}$:

- 1. $T_{k,\theta}$ is a diffeomorphism
- 2. Efficiently Trainable: $\det J_{T_{k\,\theta}}$ can be evaluated efficiently
- 3. (Optional) Easily Invertible: $T_{k,\theta}^{-1}$ can be evaluated efficiently
 - The inverses must exist, but maybe aren't easy to compute.

Tension between expressivity and tractability

Hot topic ~2015-2020: inventing new flow architectures

NICE, RealNVP, Glow, Masked Autoregressive Flows, Inverse Autoregressive Flows, Neural Spline Flows, ...

Practicalities

Desired:

- 1. Efficiently Trainable: $\det J_{T_{k\, heta}}$ can be evaluated efficiently
- 2. (Optional) Invertible: $T_{k,\theta}^{-1}$ can be evaluated efficiently

What do we mean by "tractable" Jacobians?

For any differentiable $f: \mathbb{R}^d \to \mathbb{R}^d$, you can compute $J_f(x) \in \mathbb{R}^{d \times d}$ via automatic differentiation

- Recall: autodiff computes $v^T J_f(x)$ (VJP) or $J_f(x)v$ (JVP)
- Requires d autodiff calls (one per row/column; take v to be one-hot)
- Expensive if f is a neural network block or d is large

Then, explicitly compute $\det J_f(x)$

• This is $O(d^3)$ — expensive if d is even moderately large

We need to design $T_{k,\theta}$ such that $\det J_{T_{k,\theta}}(x)$ can be computed quickly.

Autoregressive Flows

We need to design $T_{k,\theta}$ such that $\det J_{T_{k,\theta}}(x)$ can be computed quickly.

Special case: J_T is triangular

$$J_{T}(x_{0}) = \begin{bmatrix} \frac{\partial T^{(1)}}{\partial x_{0}^{(1)}} & \dots & \frac{\partial T^{(1)}}{\partial x_{0}^{(d)}} \\ \vdots & \ddots & \vdots \\ \frac{\partial T^{(d)}}{\partial x_{0}^{(1)}} & \dots & \frac{\partial T^{(d)}}{\partial x_{0}^{(d)}} \end{bmatrix} \qquad J_{T} = \begin{bmatrix} J_{11} & 0 & 0 & \dots & 0 \\ J_{21} & J_{22} & 0 & \dots & 0 \\ J_{31} & J_{32} & J_{33} & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ J_{d1} & J_{d2} & J_{d3} & \dots & J_{dd} \end{bmatrix} \qquad \Longrightarrow \det J_{T} = \prod_{i=1}^{d} J_{T,ii}$$

$$J_{T} = \begin{bmatrix} J_{11} & 0 & 0 & \dots & 0 \\ J_{21} & J_{22} & 0 & \dots & 0 \\ J_{31} & J_{32} & J_{33} & \dots & 0 \\ \vdots & \ddots & & \vdots \\ J_{d1} & J_{d2} & J_{d3} & \dots & J_{dd} \end{bmatrix}$$

$$\implies \det J_T = \prod_{i=1}^a J_{T,ii}$$

Autoregressive Flows

We need to design $T_{k,\theta}$ such that $\det J_{T_{k,\theta}}(x)$ can be computed quickly.

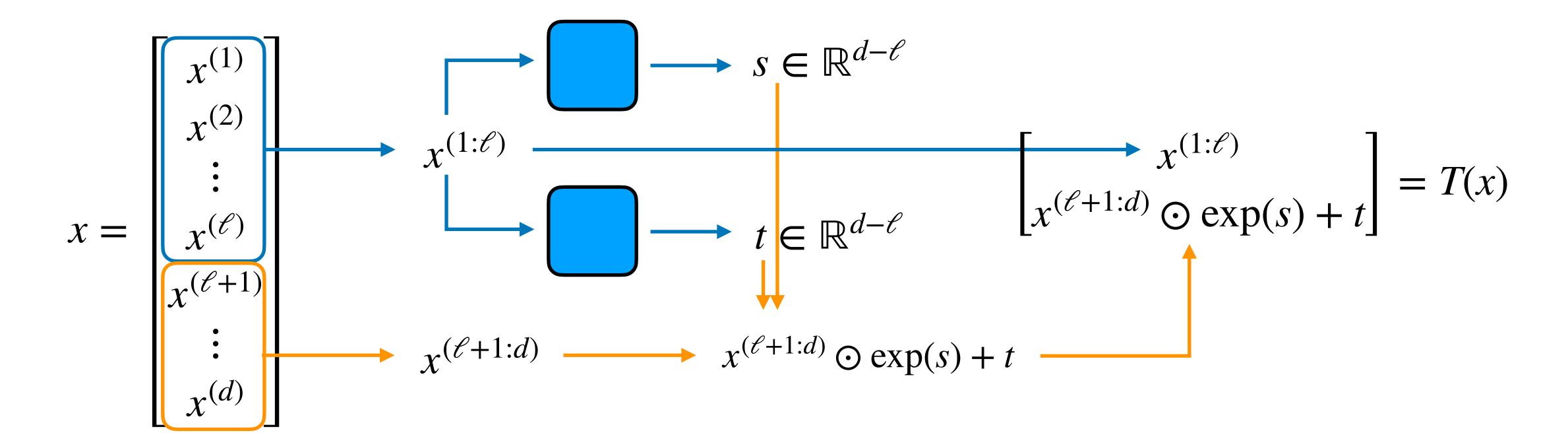
If $J_{T_{k,\theta}}$ is triangular, we can compute $\det J_{T_{k,\theta}}(x)$ in O(d) time

$$J_{T}(x_{0}) = \begin{bmatrix} \frac{\partial T^{(1)}}{\partial x_{0}^{(1)}} & \cdots & \frac{\partial T^{(1)}}{\partial x_{0}^{(d)}} \\ \vdots & \ddots & \vdots \\ \frac{\partial T^{(d)}}{\partial x_{0}^{(1)}} & \cdots & \frac{\partial T^{(d)}}{\partial x_{0}^{(d)}} \end{bmatrix} \quad J_{T} = \begin{bmatrix} J_{11} & 0 & 0 & \cdots & 0 \\ J_{21} & J_{22} & 0 & \cdots & 0 \\ J_{31} & J_{32} & J_{33} & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ J_{d1} & J_{d2} & J_{d3} & \cdots & J_{dd} \end{bmatrix}$$

The *i*th output coordinate only depends on the first i input coordinates

$$T(x) = \begin{cases} f_1(x^{(1)}) \\ f_2(x^{(1:2)}) \\ \vdots \\ f_i(x^{(1:i)}) \\ \vdots \\ f_d(x^{(1:d)}) \end{cases} \Longrightarrow J_T \text{ is triangular.}$$

Example: RealNVP [Dinh 2016]



This mapping is triangular.

Is it easily invertible? Yes!

$$T^{-1}(x) = \begin{bmatrix} x^{(1:\ell)} \\ (x^{(\ell+1:d)} - t) \odot \exp(-s) \end{bmatrix}$$

Example: RealNVP[Dinh 2016]

Samples on CelebA at 64x64 resolution

Good enough for an ICLR paper in 2017:)

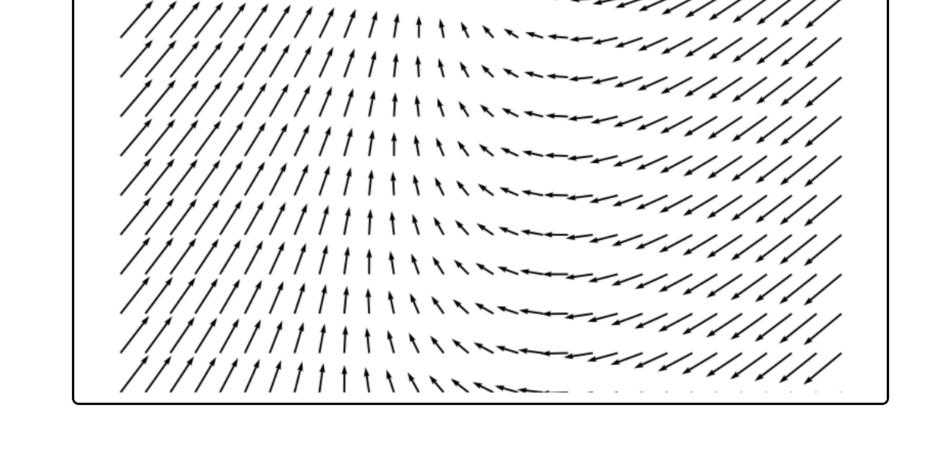


Questions?

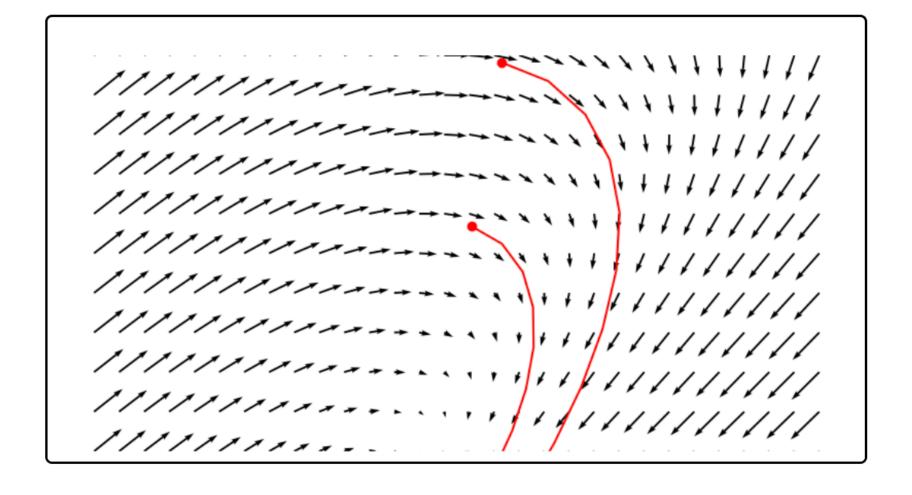
Chapter 2 Continuous-Time Flows

Crash Course on ODEs

Vector fields $v(t,x): \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ tell you **velocity** of a particle located at x at time t



An ODE $dx_t = v(t, x_t)dt$ $x_0 = x$ tells us how a particle moves starting from x_0



Crash Course on ODEs

Euler's Method: simplest scheme for numerically solving an ODE

$$dx_t = v(t, x_t)dt$$

$$x_0 = x$$

Leonhard Euler

Discretize time:

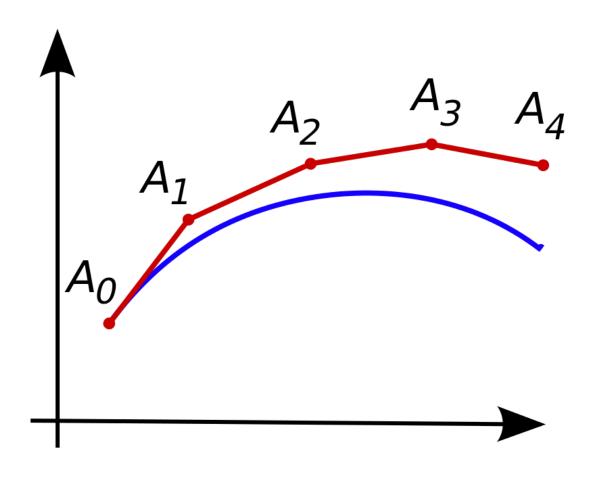
$$0 = t_0 < t_1 < \dots < t_N = T$$

$$t_{n+1} = t_n + h$$

"Step size"

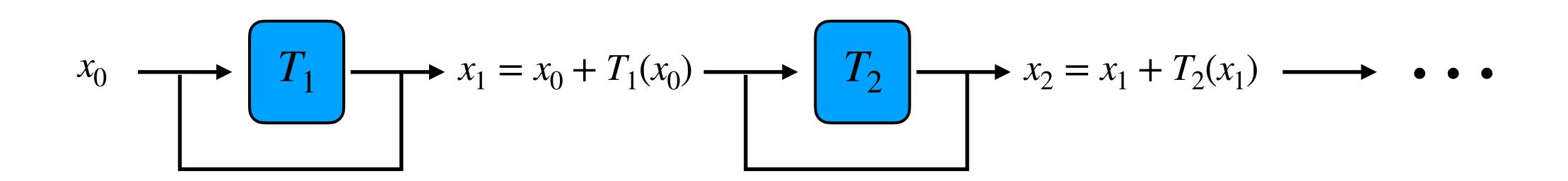
Move particle:

$$x_{t+h} = x_t + hv(t, x_t)$$



From Discrete to Continuous Dynamics

Normalising flows iteratively transform a source sample:



Instead of thinking about layers, think of time.

Each layer tells us where x_t moves after Δt seconds:

$$x_{k+1} = x_k + T(x_k, k)$$

$$x_{t+\Delta t} = x_t + \Delta t \cdot T(x_t, t)$$

$$\frac{x_{t+\Delta t} - x_t}{\Delta t} = T(x_t, t)$$
 Making $\Delta t \to dt$ small, we get an ODE:
$$\frac{d}{dt} x_t = T(x_t, t)$$

Continuous-Time Flows

Critical idea:

Instead of directly implementing a transformation $T_{\theta}(x)$, implement a velocity $v_{\theta}(x,t)$

This induces a transformation:

$$T_{\theta}(x_0) = x_1 = x_0 + \int_0^1 v_{\theta}(x_t, t) dt$$

Why would we do this?

1. Flexibility

Very mild conditions on $v \Longrightarrow T_{\theta}$ is a diffeomorphism! (existence and uniqueness of ODE solution)

$$T_{\theta}^{-1}(x_1) = x_1 - \int_{0}^{1} v_{\theta}(x_t, t) dt$$

No need to worry about tractable Jacobians, inverting your network, etc.

2. Expressivity

Like having an infinitely deep network

3. Leads to Diffusions and Flow Matching

This reformulation is a major conceptual leap

Training CNFs

Have data samples $x^{(i)} \sim q(x)$ for i = 1, 2, ..., n

Choose a base distribution $p_0(x_0)$

Implement velocity $v_{\theta}(t, x)$

Induces model distribution $p_1 = (T_{\theta})_{\text{\#}} p_0$

$$T_{\theta}(x_0) = x_1 = x_0 + \int_0^1 v_{\theta}(x_t, t) dt$$

i.e., draw initial particles $x_0 \sim p_0$ and solve $dx_t = v_\theta(x_t, t)dt$ on $t \in [0,1]$

To evaluate a KL divergence, need $\log p_1(x)$

$$\mathscr{L}(\theta) = \mathsf{KL}\left[q(x) \mid | p_1(x)\right] =_{+C} - \mathbb{E}_{q(x)}\left[\log p_1(x)\right]$$

We want a continuous-time change of variables formula

Continuity PDE

$$\operatorname{div}(v) = \sum_{i=1}^{d} \frac{\partial}{\partial x^{(i)}} v(t, x^{(i)})$$

Proposition [Continuity Equation].

If the particles X_t follow the dynamics $dX_t = v(X_t, t)dt$ $X_0 \sim p_0$

Then the density $p_t(x)$ at any time t > 0 solves the continuity PDE

$$\partial_t p_t(x) + \operatorname{div}(p_t(x)v(x,t)) = 0$$

Intuition:

Continuity PDE tells us how the density at every fixed location x changes over time

Two equivalent descriptions of the same process:

("Local")

Evolution of individual particles

$$\frac{d}{dt}x_t = v(x_t, t)$$

("Global")

Evolution of distribution of particles

$$\partial_t p_t = -\operatorname{div}(v_t p_t)$$

Change-of-Variables 2.0

$$\frac{d}{dt}\log p_t(x_t) = -\operatorname{div}(v_t(x_t)) = -\operatorname{tr}\left(J_v(t, x_t)\right)$$

Intuition:

This tells us how the density of a particular particle changes over time.

Proof:

Usual chain rule:
$$\partial_t \log p_t(x) = \frac{1}{p_t(x)} \partial_t p_t(x)$$

Continuity PDE:
$$= -\frac{1}{p_t(x)} \operatorname{div}(v_t(x)p_t(x))$$

Chain rule for div:
$$= -\frac{1}{p_t(x)} \left(p_t(x) \text{div}(v_t(x)) + \left\langle v_t(x), \nabla_x p_t(x) \right\rangle \right)$$

$$= -\operatorname{div}(v_t(x)) - \left\langle v_t(x), \nabla_x \log p_t(x) \right\rangle$$

Change-of-Variables 2.0

$$\frac{d}{dt}\log p_t(x_t) = -\operatorname{div}(v_t(x_t)) = -\operatorname{tr}\left(J_v(t, x_t)\right)$$

Intuition:

This tells us how the density of a particular particle changes over time.

Proof (continued):
$$\partial_t \log p_t(x) = -\operatorname{div}(v_t(x)) - \langle v_t(x), \nabla_x \log p_t(x) \rangle$$

Compute the total derivative via the chain rule:

$$\frac{d}{dt}\log p_t(x_t) = \partial_t \log p_t(x_t) + \left\langle \frac{d}{dt} x_t, \nabla_x \log p_t(x_t) \right\rangle$$

$$= \partial_t \log p_t(x_t) + \left\langle v_t(x_t) \nabla_x \log p_t(x_t) \right\rangle$$

$$= -\operatorname{div}(v_t(x_t))$$

Change-of-Variables 2.0

Corollary.

$$\frac{d}{dt}\log p_t(x_t) = -\operatorname{div}(v_t(x_t)) = -\operatorname{tr}\left(J_v(t, x_t)\right)$$

Takeaway:
$$\log p_1(X_1) = \log p_0(X_0) - \int_0^1 \text{div} (v(t, X_t)) dt$$

Given $x_0 \sim p_0$, can get x_1 and its density $\log p_1(x_1)$ simultaneously:

$$\begin{bmatrix} X_1 \\ \log p_1(X_1) \end{bmatrix} = \begin{bmatrix} X_0 \\ \log p_0(X_0) \end{bmatrix} + \int_0^1 \begin{vmatrix} v_{\theta}(t, X_t) \\ -\operatorname{div}\left(v_{\theta}(t, X_t)\right) \end{vmatrix} dt$$

The same idea works "in reverse".

Training CNFs

Algorithm:

- 1. Draw samples $x_1^{(i)} \sim q(x)$ for i = 1, 2, ..., n
- 2. Compute $\log p_1(x)$ via $\log p_1(X_1) = \log p_0(X_0) \int_0^1 \operatorname{div} \left(v_\theta(t, X_t) \right) dt$
 - In practice, plug into your favourite numerical ODE solver
- 3. Do gradient descent to minimize $\mathscr{L}(\theta) = \mathsf{KL}\left[q(x) \mid |p_1(x)\right] =_{+C} \mathbb{E}_{q(x)} \left|\log p_{1(x)}\right|$

Training CNFs

Remarks:

- 1. The neural network $v_{\theta}(t,x)$ no longer is required to be a diffeomorphism!
- 2. Training requires numerically solving an ODE ("simulating")
 - Requires $\operatorname{tr}\left(J_{v_{\theta}}(t,x)\right)$ at every ODE step

... cheaper than a determinant, but still needs O(d) backward passes

• A common trick: Hutchinson's Trace Estimator

$$\operatorname{tr}\left(J_{\nu_{\theta}}(t,x)\right) \approx w^{T} J_{\nu_{\theta}}(t,x) w \qquad w \sim N(0,I)$$

Intuition: project your Jacobian onto a random direction *w*

Only needs one backwards pass

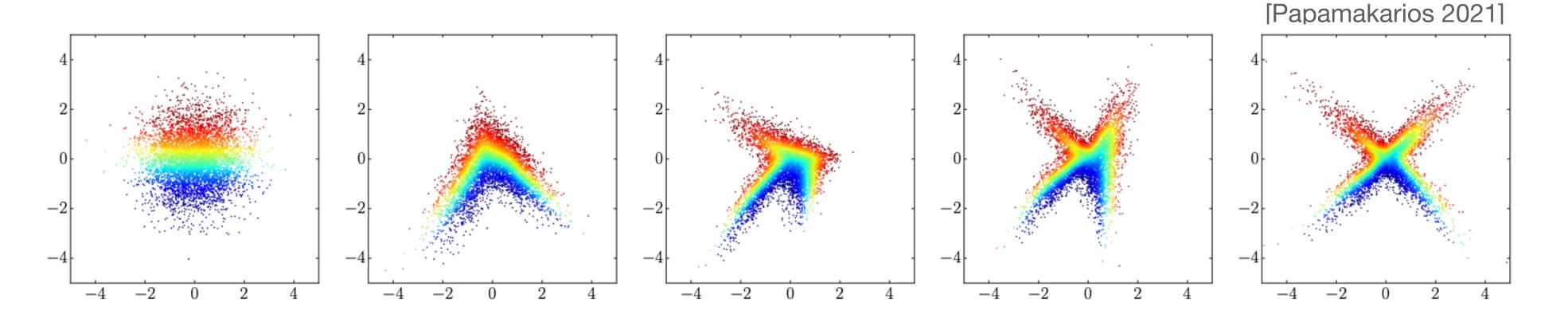
Example: FFJORD [Grathwohl 2018]

- 3. Training requires backprop through ODE solver
 - Huge memory costs if done naively
 - "Adjoint method" solves this

Questions?

Summary

Discrete-Time Flows iteratively transform samples from a simple distribution



- Useful for both density estimation and sampling
- •Transformations must be invertible and T, T^{-1} differentiable (*diffeomorphism*)
- •Trained by divergence minimisation (~maximum likelihood)
- •Transformed density can be computed via change-of-variables
 - •Require specialised architectures for tractable Jacobians

Summary

Discrete-Time Flows transform samples through an ODE

("Local") ("Global") Evolution of individual particles
$$\frac{d}{dt}x_t = v(x_t,t)$$
 Evolution of distribution of particles
$$\partial_t p_t = -\operatorname{div}(v_t p_t)$$

- Neural network parameterises vector field
 - No need for specialised architectures
- •Trained by divergence minimisation (~maximum likelihood)
 - Continuous-time change of variables derived via continuity PDE