Normalising Flows

Gavin Kerrigan
2025 November 25

gavin.kerrigan@stats.ox.ac.uk
GavinKerrigan.github.io/teaching

d

Slides available here!

Motivation: Generative Models

Unconditional generative models learn p(x) from data.

Motivation: Generative Models

Unconditional generative models learn p(x) from data.

[Zhai 2025]

Common use cases:

1. Sampling

Given a collection of data, how can I learn to
produce new data with similar properties?

Example: generating molecules

Motivation: Generative Models

Unconditional generative models learn p(x) from data.

[Nakao 2021]

Common use cases:

Normal

1. Sampling

2. Anomaly detection l

Given a collection of “normal” data, how can | ,

detect if a new datapoint is “abnormal”?

Example: learn a density p(x) for normal images, Ab | | |
and evaluate p(x’) on a test image. norma l l

Motivation: Generative Models

Unconditional generative models learn p(x) from data.

Common use cases:

[Saharia 2023]

1. Sampling

2. Anomaly detection

3. Inverse problems

Can | recover an underlying signal from a partial
measurement?

Example: super-resolution, inpainting, ...

Flows in 20257

Normalising flows are a class of generative models that learn p(x) explicitly.

... why are we still talking about them when we have diffusion??

1. Directly related to density estimation

Example uses: Anomaly detection, Bayesian inference, compression, ...

2. Relatively efficient

Can sample with a single forward pass
Simple models can be effective for low-dimensional problems

3. Diffusion is secretly a high-tech normalising flow
Important for understanding and historical context

Flows in 20257

Folklore: “Normalising flows are good at density estimation but bad at sampling.”

SOTA Flow in 2017 (RealNVP) SOTA Flow in 2024 (TarFlow)

Chapter 1
Discrete-Time Flows

The Basic Idea

Setting the stage:
e All random variables are assumed to be continuous vectors in RY.

Question: how can we get a highly expressive p(x)?
Simple parametric distributions are not enough.

Key idea: transform samples from a simple distribution!
[Papamakarios 2021]

The Basic Idea)

o

Choose a base distribution py(x,)

Requirements: 0

o

1. Easy to sample xy ~ p,

2. Easy to evaluate py(x) "

Most common choice: py(xy) = N (xO | 0,1)

Choose a transformation 7 : R4 — R4

Given x, ~ py, we obtain a transformed version x; = T(x,)

o

If | sample many x;’s, | get a new distribution p(x;) 0

o

Question: what is the density p;(x;)?

l

l

-
NS

Pushforwards

Xo~ Do x; = T1(xp)

Question: what is the density p(x;)?

Called the pushforward of p, along 7, denoted p; = 1T4p,

J(xp)

ﬁroposition [Change-of-Variables].

\

If T is invertible and 7, T 1 are differentiable, then

~

pl(xl) — po(xO)‘det JT(X())‘_I where XO — T_l(xl)

= Py (T_l(xl)) |det J-i(x))|

/

Intuition: normalise how likely the “source point” x;, is by how much 1" stretches out the space

oT™
oxV

o7 @
ox(D

o7

d
8x(§)

o7

d
0x(())

Diffeomorphisms

An invertible transformation 1 with 7, T-! differentiable is called a diffeomorphism

Diffeomorphisms are nice.

Sidebar: they set of diffeomorphisms on a space forms a group.

Given diffeomorphisms 17, 15, their composition 15 o 1 is a diffeomorphism
. -1 _ -1 —1
Inverse: (I501)) =1, o1,

JaCOblan d@t JTonl(X) — d@t JTZ(TI(X)) . d@t JTl(.X)

Questions?

Diffeomorphisms

We can stack together many small transformations to get a big transformation.

If each step Is a diffeomorphism, we can compute the resulting density.

Xo ~ Po x; ~ pp = 11upg

[Papamakarios 2021]

Discrete-ime Normalising Flows

Have data samples xY) ~ g(x) fori = 1,2,...,n
Choose a base distribution py(x)

Implement some diffeomorphisms 1} : RY — R4

Typically: a specific kind layer (or block) of a neural network
Layer index k

@ represents all parameters (which differ across layers)
Overall transformation: full neural network, stacking each block
TQ — TK,Q °c...9° Tz,e o Tl,@

Defines a model distribution p, = Ty.p,

Discrete-ime Normalising Flows

Have:
data samples xD ~ g(x) diffeomorphism o= 1gg°...o 1501 4
base distribution py(xp) model distribution Py = TyDy

Goal: py(x) & g(x)

Let’s minimise a discrepancy between py(x) and g(x)
Almost always it will be the KL.:

L) =KL [g) | | pyx) |

Discrete-ime Normalising Flows

Have:
data samples xD ~ g(x) diffeomorphism o= 1gg°...o 1501 4
base distribution py(xp) model distribution Py = TyDy

Goal: py(x) & g(x)

Let’s minimise a discrepancy between py(x) and g(x)
Almost always it will be the KL.:

ZO) =KL |[g) |1 pg®)| =ic—E i |logpy)]

Discrete-ime Normalising Flows

Have:
data samples x(i) ~ q(x) diffeomorphism Iy = TKH oo © Tz,e © Tl,e
base distribution py(xp) model distribution Py = Ty:Do

Goal: P@(X) ~ q(x)

Let’s minimise a discrepancy between py(x) and g(x)
Almost always it will be the KL.:

L) =KL [g) | | pyx) | =,c — E ¢ [log py) | Change-of-Variables:
Po (¥) = po(Ty ' (x))|det J7 ' (x)] !

_ [Eq(x) [logpo (Tg_l(x)) + log|det JTH—I(X)l]

Discrete-ime Normalising Flows

Have:
data samples xD ~ g(x) diffeomorphism o= 1gg°...o 1501 4
base distribution py(xp) model distribution Py = TyDy

Goal: py(x) & g(x)

Let’s minimise a discrepancy between py(x) and g(x)
Almost always it will be the KL.:

L) =KL [g) | | pyx) | =,c — E ¢ [log py) | Change-of-Variables:
Py (0)) = po(T; ' (0))|det J7 ' ()]~

= — [Eq(x) [logpo (Tg_l(x)) + log|det JTQ—I(X)l]
Monte Carlo estimate

1 n . .
L3 g (17 + e 0
=1

Discrete-ime Normalising Flows

Have:
data samples xD ~ g(x) diffeomorphism o= 1gg°...o 1501 4
base distribution py(xp) model distribution Py = TyDy

Goal: Minimize

1 -« . .
L(O) = — — Z log p, (Tg_l(x(l))) + log|det JTQ—I(X(Z))‘
i=1

To evaluate this:
1. Need samples x¥ ~ g(x), but not the value of g(x"")

2. 1, must be a diffeomorphism (equivalently, each 1, /) Note: you don’t need to be able to evaluate Ty to train

.... only to sample!
Practically:

3. Evaluate T, l(x) and det Jr-1(x) efficiently

Reverse KL Training

Have:

A density g(x) = E@(x) diffeomorphism log=Tggpo...o1y9° 14

NP _T
base distribution Py(xp) model distribution Py = Lg4Po

Goal: draw samples x ~ g(x)

Example: Bayesian inference

q(0)q(z |)

Posterior g0 z) = ~ is known up to the normalising constant Z

Reverse KL Training

Have:

A density g(x) = Eé(x) diffeomorphism log=Tggpo...o1y9° 14

NP _T
base distribution Py(xp) model distribution Py = Lg4Po

We can use the Reverse KL to derive a loss:

F(0) =KL | pgx) | | g(x) |

= J | 1og py(x) — log g(x) | py(x)dx

Reverse KL Training

Have:

A density g(x) = Eé(x) diffeomorphism log=Tggpo...o1y9° 14

NP _T
base distribution Py(xp) model distribution Py = Lg4Po

We can use the Reverse KL to derive a loss:

F(0) =KL | pgx) | | g(x) |

Substitution:
B J [108199 (x) — log g(x)] Po(x)dx x =T(xp) dx = |detJr(xp)|dx

_ J [1oz.py () — loz q (T0x9) | py (T0x9) Idet Jy(x) g

Reverse KL Training

Have: 1
A density q(x) = E@(x) diffeomorphism lyg=Tgge...olp9°1)

NP _T
base distribution Py(xp) model distribution Py = Lg4Po

We can use the Reverse KL to derive a loss:

F(0) =KL | pgx) | | g(x) |

Substitution:
B J [108199 (x) — log g(x)] Po(X)dx x =T(xp) dx = |detJr(xp)|dx

— J [log Py (T(xo)) —loggq (T (xo))] Py (T(xo)) |det J(xy)|dx, Change-of-Variables:
Po (T(xo)> = po(xp)|det JT(xo)|_1
— J [log Po (xo) — log|det Jp(xo)| — log g (T(xy))] Poxo)det Jp(xp) |~ | det J(xy) |dx,

Reverse KL Training

Have: 1
A density q(x) = E@(x) diffeomorphism lyg=Tgge...olp9°1)

NP _T
base distribution Py(xp) model distribution Py = Lg4Po

We can use the Reverse KL to derive a loss:

F(0) =KL | pgx) | | g(x) |

Substitution:
B J [108199 (x) — log g(x)] Po(X)dx x =T(xp) dx = |detJr(xp)|dx

— J [log Py (T(xo)) —loggq (T (xo))] Py (T(xo)) |det J(xy)|dx, Change-of-Variables:
Po (T(xo)) = po(xp)|det JT(xo)I_l
— J [log Po (xo) — log|det Jp(xo)| — log g (T(xy))] Poxo)det Jp(xp) |~ | det J(xy) | dx,

=poxo) [log po(xp) — log ‘det J7(%o) ‘ —log g (T(xp))]

Reverse KL Training

Have:

A density g(x) = Eé(x) diffeomorphism log=Tggpo...o1y9° 14

NP _T
base distribution Py(xp) model distribution Py = Lg4Po

We can use the Reverse KL to derive a loss:
F(0) =KL | ps) | | g(x)]
= [Epo(x()) [log py(xy) — log ‘det Jr(xp) ‘ —log g (T(Xo))]

Reverse KL Training

Have:

A density g(x) = Eé(x) diffeomorphism log=Tggpo...o1y9° 14

NP _T
base distribution Py(xp) model distribution Py = Lg4Po

We can use the Reverse KL to derive a loss:

F(0) =KL | pgx) | | g(x) |

— [Epo(X<)) [log py(xp)|— log ‘ det J(x) ‘ —loggq (T(xO))] Since log g(x) = log g(x) — Z

and py(Xy) does not depend on &

+C Tpo(xp) [lOg\det J T(XO)‘ log g <T(x0))]

Reverse KL Training

Have:

A density g(x) = E@(x) diffeomorphism log=Tggpo...o1y9° 14

NP _T
base distribution Py(xp) model distribution Py = Lg4Po

We can use the Reverse KL to derive a loss:

F(0) =KL | pgx) | | g(x) |

— po(xo) [log py(xp) — log ‘ det J7(xp) ‘ —loggq (T(XO))] Since log g(x) =logg(x) —Z

and py(Xy) does not depend on &

—+C T Epylxo) [lgg\det Jr(xp)| +log g (T(x()))]

Estimate from samples Xéi) ~ Po

1 <« | . O\

~—— Y |logldet /()| +log g (T(x(gl>)>
n

i=1 L :

Reverse KL Iraining

Have:

A density g(x) = E@(x) diffeomorphism log=Tggpo...o1y9° 14

- . . : : - — T
base distribution Py(xp) model distribution Py = Lg4Po

Goal: Minimize

JO) = — — Z llog\detj (x| +log g (T(x(‘))>]

To evaluate this:

1. Need the value g(x), but not samples Note: you don’t need to be able to evaluate T}, to train

2 TQ must be a diffeomorphism (equivalently, each Tk 9) ... but you do need it if you want to evaluate the model density.

Practically:

3. Evaluate T4(x) and det J(x) efficiently

Summary

Objective Sample g(x)?

Forward KL
ZLO) =KL [gx) | | py) |

Reverse KL
FO)=KL[py®) || q] X

Summary

Objective Sample g(x)? Evaluate (x)?

Forward KL %
ZLO) =KL [gx) | | py) |

Reverse KL
FO) =KL [py) | 1q)] X

Summary

Obijective Sample g(x)? Evaluate g(x)? Model Param.

Forward KL % Iy
Z0) =KL [g() | | py)]

Reverse KL
FO) =KL [p0) | 1g0] X Iy

Summary

Obijective Sample g(x)? Evaluate g(x)? Model Param. Use Case

Forward KL % T, Density Estimator
Z©) =KL [q(x) | | p(x)

Reverse KL

FO) =KL [p) [1qw] X T, Sampler

Questions?

Practicalities

We will focus on implementing 7, — everything holds for the other case.

n

o | | e
Goal: Minimize J(0) = — — Z log|det JT(X(()I))l +log (T(xé”))

n
=1

Requirements on 1 g

1. 1} y is a diffeomorphism

2. Efficiently Trainable: det Jr, , can be evaluated efficiently

3. (Optional) Easily Invertible: Tk_ 91 can be evaluated efficiently

® [he inverses must exist, but maybe aren’t easy to compute.

Tension between expressivity and tractability
Hot topic ~2015-2020: inventing new flow architectures

NICE, RealNVP, Glow, Masked Autoregressive Flows, Inverse Autoregressive Flows, Neural Spline Flows, ...

Practicalities

Desired:
1. Efficiently Trainable: det Jr, , can be evaluated efficiently

2. (Optional) Invertible: 17~ 91 can be evaluated efficiently

What do we mean by “tractable” Jacobians?

For any differentiable f: RY - R you can compute Jf(x) e R%4 yig automatic differentiation

 Recall: autodiff computes vTJf(x) (VJP) or J(x)v (JVP)
» Requires d autodiff calls (one per row/column; take v to be one-hot)

« Expensive if fis a neural network block or d is large

Then, explicitly compute det J¢(x)

. This is O(d?) — expensive if d is even moderately large

We need to design T 4 such that det JTke(x) can be computed quickly.

Autoregressive Flows

We need to design T} 4 such that det]Tke(x) can be computed quickly.

0T
ox !

J T(Xo) — .
oT@
(D

o7

ox\®

oT@D

0x(()d)

Special case:
Jris triangular

0O 0 ... O
Jr, 0 0
J3p Js3 0
Joo iz Jaa

d
=1

Autoregressive Flows

We need to design T} 4 such that det]Tke(x) can be computed quickly.

If]Tk,e is triangular, we can compute det JTkﬁ(x) in O(d) time

J(xp)

oT)
ox"

o7
oxD

oT)

d
()x(())

oT ¥

d
ax(())

—>Jis triangular.

The 1th output coordinate only

depends on the first 1 input
coordinates

Example: RealNVP....

= T(x)

. : —T» x(1:0)
) (Z+1:d)
X = — s e i X © exp(s) + ¢

This mapping is triangular. Is it easily invertible? Yes!

x(l:f)

—1 —
I (x) = [(x(fﬂzd) — 1) © exp(—s)

Example: RealNVP....

Samples on CelebA at 64x64 resolution

Good enough for an ICLR paper in 2017 :)

Questions?

Chapter 2
Continuous-Time Flows

Vector fields v(z, x) : R X RY > R4 tell you velocity
of a particle located at x at time ¢

An ODE dx, = v(t, x,)dt Xo =X

tells us how a particle moves starting from X,

Crash Course on ODEs

JISIIIII N AT
I 74
NS s 7
I N 74

///////// AN \\\‘«—:://///////
/44///////f"\\\\\thy::?Q??ﬁéé/
,44///////f1\\\\\\«~w777f???§44/
21/7///NN \\\._,//////////
2//7/// N \\“‘_’//////////
S
CTTTTTEINNNNLL))
////////////..—-_.—.s\\\\\\\\‘:;555
////////////___._.—»»\\\\ \ VWil /s //
////////////_._.—.\\\\\\§4J//////
///////////,_._.‘\\\\\¥ Vil S SSSS
/9064444‘[//’»*‘\\“" ////////
///////////,_.-.‘\\\ti//////////
//////////,—...‘s«wti///////////
S e, ’ LSS S S S
T N

S Ve dd

Euler’s Method: simplest scheme for numerically solving an ODE

Discretize time:
tn_|_1 — tn + h

Move particle:

44

Crash Course on ODEs

dx, = v(t, x,)dt

O=to<t;1<---<ty=T

—

“Step size”

X, = X, + hv(t, x,)

'XO:‘X

1707-83

From Discrete to Continuous Dynamics

Normalising flows iteratively transform a source sample:

X0 —>‘ .:|—> X = Xo + T7(xp) —>‘ .]—> X=X+ 15(x;)) —> o o o

Instead of thinking about layers, think of time. Xe+1 = X T T(Xk’ k)

Each layer tells us where x, moves after At seconds: Xy Ap = X T At - T(xt, 1)
X — X
At t
= T(xt, r) Making At — dt small, we get an ODE: d
At —x, = 1(x,, 1)

dt

Continuous-Time Flows

Critical idea:

Instead of directly implementing a transformation 7,4(x), implement a velocity vy(x, 1)

1

This induces a transformation: T@(XO) = X; = Xy T J vg(xt, 1dt
0
Why would we do this?
1. Flexibility 1
Very mild conditions on v = 1, is a diffeomorphism! Tg_l(xl) — xl — J VQ(XZ’ t)dt
(existence and uniqueness of ODE solution) O

No need to worry about tractable Jacobians, inverting your network, etc.

2. Expressivity

Like having an infinitely deep network

3. Leads to Diffusions and Flow Matching

This reformulation is a major conceptual leap

Training CNFs

Have data samples x\V ~ g(x)fori=1,2,...,n
Choose a base distribution Py(Xp)

Implement velocity v,(z, x)

1
Induces model distribution p; = (Ty)4p, T(xy) = x; = X [Vo(x,, Hdt

i.e., draw initial particles x, ~ py and solve dx, = vy(x,, f)dt on t € [0,]1]

To evaluate a KL divergence, need log p,(x)

ZO) =KL |[qg) || pyx)]| == Eypm|logp ()]

We want a continuous-time change of variables formula

Continuity PDE .

/Proposition [Continuity Equation]. \

If the particles X, follow the dynamics ~ dX, = v(X,,t)dt X, ~ p,

Then the density p,(x) at any time ¢ > 0 solves the continuity PDE

\ 0,p(x) + div(p,(x)v(x, 1) = 0 /

Intuition:

Continuity PDE tells us how the density at every fixed location x changes over time

Two equivalent descriptions of the same process:

(“Local”) (“Global”)

Evolution of individual particles Evolution of distribution of particles

%xt = V(X 7) atpt - diV(tht)

Change-of-Variables 2.0

Corollary.
d .
< — log pi(x,) = — div(v(x) = —1r (Jv(t’ xt)))

This tells us how the density of a particular particle changes over time.

Intuition:

Proof: |
Usual chain rule: 0,10g p,(x) = d,p(x)
pAx)
|
nui - = Aiv(v(x)p,(x))
Continuity PDE: ,(x) t t
1 .
Chain rule for div: =) (pt(x)dlv(vt(x)) + (v(x), V. pt(x))
f

= — div(v,(x)) — (v(x), V_log p(x))

Change-of-Variables 2.0

Corollary.

%log pix) = — div(v(x)) = —tr (J,(6,x))

Intuition:

This tells us how the density of a particular particle changes over time.

Proof (continued): d,log p(x) = — div(v,(x)) — (v,(x), V, log p(x))

Compute the total derivative via the chain rule:

d d
P log p/(x,) = d,log p(x,) + <Ext’ V,log pt(xt)>

= 0,10g p,(x)) + (v(x) V,log p,(x))

= — div(v,(x,)) _

Change-of-Variables 2.0

Corollary.
d .
< — log pi(x,) = — div(v(x) = —1r (Jv(t’ xt)))

1

Takeaway: logp,(X;) = logpy(X,) — J div (v(t, Xt)) dt
0

Given x, ~ p,, can get x; and its density log p,(x;) simultaneously:

1 vy(t, X))
i L _div (vt, X)) |

loeri] = e
log pi(X)) B log py(Xp)

e The same idea works “in reverse”.

Training CNFs

Algorithm:

1. Draw samples xl(i) ~qg(x)fori=1,2,...,n

1

2. Compute log p,(x) via logp (X)) =logpy(Xy) — | div (vy(t, X)) dt
JO

® |n practice, plug into your favourite numerical ODE solver

3. Do gradient descent to minimize Z(0) =KL | g() | | pi(®) | =4¢c —E [10gl71(x>]

Training CNFs

Remarks:

1. The neural network v4(¢, x) no longer is required to be a diffeomorphism!

2. Training requires numerically solving an ODE (“simulating™)
« Requires tr (ng(t, x)) at every ODE step
... cheaper than a determinant, but still needs O(d) backward passes

e A common trick: Hutchinson’s Trace Estimator

tr <Jv9(t, x)) ~ wTJVQ(t, X)w w ~ N(O,)

Intuition: project your Jacobian onto a random direction w
Only needs one backwards pass

Example: FFJORD [Grathwoni 2018]

3. Training requires backprop through ODE solver
* Huge memory costs if done naively

* “Adjoint method” solves this

Questions?

Summary

Discrete-Time Flows iteratively transform samples from a simple distribution

[Papamakarios 2021]

*Useful for both density estimation and sampling

*Transformations must be invertible and T, T~! differentiable (diffeomorphism)

*Trained by divergence minimisation (~maximum likelihood)
*Transformed density can be computed via change-of-variables

*Require specialised architectures for tractable Jacobians

Summary

Discrete-Time Flows transform samples through an ODE

(“Local”) (“Global”)
Evolution of individual particles Evolution of distribution of particles
d _ .
= V(D) J,p, = — div(v,p,)

*Neural network parameterises vector field

*No need for specialised architectures

*Trained by divergence minimisation (~maximum likelihood)

*Continuous-time change of variables derived via continuity PDE

