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Motivation: Generative Models
Unconditional generative models learn  from data.p(x)



Motivation: Generative Models
Unconditional generative models learn  from data.p(x)

1. Sampling

Common use cases:

Given a collection of data, how can I learn to 
produce new data with similar properties?

Example: generating molecules

[Zhai 2025]



Motivation: Generative Models
Unconditional generative models learn  from data.p(x)

1. Sampling

2. Anomaly detection

Common use cases:

Given a collection of “normal” data, how can I 
detect if a new datapoint is “abnormal”?

Example: learn a density  for normal images, 
and evaluate  on a test image.

p(x)
p(x′￼)

[Nakao 2021]



Motivation: Generative Models
Unconditional generative models learn  from data.p(x)

1. Sampling

2. Anomaly detection

3. Inverse problems

Common use cases:

y x ̂xCan I recover an underlying signal from a partial 
measurement?

Example: super-resolution, inpainting, …

[Saharia 2023]



Flows in 2025?

1. Directly related to density estimation
Example uses: Anomaly detection, Bayesian inference, compression, … 

Normalising flows are a class of generative models that learn  explicitly.p(x)
… why are we still talking about them when we have diffusion?

2. Relatively efficient
Can sample with a single forward pass
Simple models can be effective for low-dimensional problems

3. Diffusion is secretly a high-tech normalising flow
Important for understanding and historical context



Flows in 2025?
Folklore: “Normalising flows are good at density estimation but bad at sampling.”

SOTA Flow in 2017 (RealNVP) SOTA Flow in 2024 (TarFlow)



Chapter 1 
Discrete-Time Flows



The Basic Idea
Setting the stage:

• All random variables are assumed to be continuous vectors in .ℝd

Question: how can we get a highly expressive ? p(x)
Simple parametric distributions are not enough.

Key idea: transform samples from a simple distribution!
[Papamakarios 2021]



The Basic Idea
Choose a base distribution p0(x0)

Requirements:

1. Easy to sample x0 ∼ p0

2. Easy to evaluate p0(x)

Most common choice: p0(x0) = 𝒩 (x0 ∣ 0, I)
Choose a transformation T : ℝd → ℝd

Given , we obtain a transformed version x0 ∼ p0 x1 = T(x0)

Question: what is the density p1(x1)?

x0 ∼ p0

If I sample many ’s, I get a new distribution x0 p1(x1)

x1 ∼ p1



Pushforwards
Question: what is the density p1(x1)?

x0 ∼ p0 x1 = T(x0)

Called the pushforward of  along , denoted  p0 T p1 = T#p0

Proposition [Change-of-Variables].

If  is invertible and  are differentiable, thenT T, T−1

p1(x1) = p0(x0)|det JT(x0)|−1 x0 = T−1(x1)

Intuition: normalise how likely the “source point”  is by how much  stretches out the space x0 T

JT(x0) =

∂T(1)

∂x(1)
0

… ∂T(1)

∂x(d)
0

⋮ ⋱ ⋮
∂T(d)

∂x(1)
0

… ∂T(d)

∂x(d)
0

= p0 (T−1(x1))|det JT−1(x1)|

where



Diffeomorphisms
An invertible transformation  with  differentiable is called a diffeomorphismT T, T−1

Given diffeomorphisms , their composition  is a diffeomorphismT1, T2 T2 ∘ T1

Diffeomorphisms are nice. 
Sidebar: they set of diffeomorphisms on a space forms a group. 

Inverse: (T2 ∘ T1)−1 = T−1
1 ∘ T−1

2

Jacobian: det JT2∘T1
(x) = det JT2

(T1(x)) ⋅ det JT1
(x)



Questions?



Diffeomorphisms
We can stack together many small transformations to get a big transformation.

x0 ∼ p0 x1 ∼ p1 = T1#p0

x2 ∼ p2 = T2#p1

= (T2 ∘ T1)#p0
xL ∼ (TL ∘ … ∘ T1)#p0

[Papamakarios 2021]

If each step is a diffeomorphism, we can compute the resulting density.

…



Discrete-Time Normalising Flows
Have data samples  for x(i) ∼ q(x) i = 1,2,…, n

Choose a base distribution p0(x0)

Implement some diffeomorphisms 

Typically: a specific kind layer (or block) of a neural network

Tk,θ : ℝd → ℝd

kLayer index  

θ represents all parameters (which differ across layers) 

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

Defines a model distribution pθ = Tθ#p0

Overall transformation: full neural network, stacking each block



Discrete-Time Normalising Flows
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismdata samples

p0(x0)
x(i) ∼ q(x)

pθ = Tθ#p0

Goal: pθ(x) ≈ q(x)
Let’s minimise a discrepancy between  and pθ(x) q(x)

ℒ(θ) = 𝖪𝖫 [ q(x) ∣ ∣ pθ(x) ]
Almost always it will be the KL:



Discrete-Time Normalising Flows
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismdata samples

p0(x0)
x(i) ∼ q(x)

pθ = Tθ#p0

Goal: pθ(x) ≈ q(x)
Let’s minimise a discrepancy between  and pθ(x) q(x)

ℒ(θ) = 𝖪𝖫 [ q(x) ∣ ∣ pθ(x) ] =+C − 𝔼q(x) [ log pθ(x) ]
Almost always it will be the KL:



Discrete-Time Normalising Flows
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismdata samples

p0(x0)
x(i) ∼ q(x)

pθ = Tθ#p0

Goal: pθ(x) ≈ q(x)
Let’s minimise a discrepancy between  and pθ(x) q(x)

ℒ(θ) = 𝖪𝖫 [ q(x) ∣ ∣ pθ(x) ] =+C − 𝔼q(x) [ log pθ(x) ]
Almost always it will be the KL:

= − 𝔼q(x) [ log p0 (T−1
θ (x)) + log|det JT−1

θ
(x)| ]

Change-of-Variables:
pθ (x) = p0(T−1

θ (x))|det J−1
Tθ

(x)|−1



Discrete-Time Normalising Flows
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismdata samples

p0(x0)
x(i) ∼ q(x)

pθ = Tθ#p0

Goal: pθ(x) ≈ q(x)
Let’s minimise a discrepancy between  and pθ(x) q(x)

ℒ(θ) = 𝖪𝖫 [ q(x) ∣ ∣ pθ(x) ] =+C − 𝔼q(x) [ log pθ(x) ]
Almost always it will be the KL:

= − 𝔼q(x) [ log p0 (T−1
θ (x)) + log|det JT−1

θ
(x)| ]

Change-of-Variables:
pθ (x)) = p0(T−1

θ (x))|det J−1
Tθ

(x)|−1

≈ −
1
n

n

∑
i=1

log p0 (T−1
θ (x(i))) + log|det JT−1

θ
(x(i))|

Monte Carlo estimate



Discrete-Time Normalising Flows
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismdata samples

p0(x0)
x(i) ∼ q(x)

pθ = Tθ#p0

Goal: Minimize

L(θ) = −
1
n

n

∑
i=1

log p0 (T−1
θ (x(i))) + log|det JT−1

θ
(x(i))|

Note: you don’t need to be able to evaluate  to trainTθ

…. only to sample!
2.  must be a diffeomorphism (equivalently, each )Tθ Tk,θ

To evaluate this:
1. Need samples , but not the value of x(i) ∼ q(x) q(x(i))

3. Evaluate  and  efficientlyT−1
θ (x) det JT−1(x)

Practically:



Reverse KL Training
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismA density

p0(x0)

q(x) =
1
Z

q̃(x)
pθ = Tθ#p0

Goal: draw samples x ∼ q(x)

Example: Bayesian inference

q(θ ∣ z) =
q(θ)q(z ∣ θ)

Z
Posterior is known up to the normalising constant    Z



Reverse KL Training
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismA density

p0(x0)

q(x) =
1
Z

q̃(x)
pθ = Tθ#p0

𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]
We can use the Reverse KL to derive a loss:

= ∫ [ log pθ (x) − log q(x) ] pθ (x)dx



Reverse KL Training
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismA density

p0(x0)

q(x) =
1
Z

q̃(x)
pθ = Tθ#p0

We can use the Reverse KL to derive a loss:

= ∫ [ log pθ (x) − log q(x) ] pθ (x)dx

= ∫ [ log pθ (T(x0)) − log q (T(x0)) ] pθ (T(x0))|det JT(x0)|dx0

Substitution:
x = T(x0) dx = |det JT(x0)|dx0

𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]



Reverse KL Training
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismA density

p0(x0)

q(x) =
1
Z

q̃(x)
pθ = Tθ#p0

We can use the Reverse KL to derive a loss:

= ∫ [ log pθ (x) − log q(x) ] pθ (x)dx

= ∫ [ log pθ (T(x0)) − log q (T(x0)) ] pθ (T(x0))|det JT(x0)|dx0

Substitution:
x = T(x0) dx = |det JT(x0)|dx0

Change-of-Variables:
pθ (T(x0)) = p0(x0)|det JT(x0)|−1

= ∫ [ log p0 (x0) − log|det JT(x0)| − log q (T(x0)) ] p0(x0)|det JT(x0)|−1|det JT(x0)|dx0

𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]



Reverse KL Training
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismA density

p0(x0)

q(x) =
1
Z

q̃(x)
pθ = Tθ#p0

We can use the Reverse KL to derive a loss:

= ∫ [ log pθ (x) − log q(x) ] pθ (x)dx

= ∫ [ log pθ (T(x0)) − log q (T(x0)) ] pθ (T(x0))|det JT(x0)|dx0

Substitution:
x = T(x0) dx = |det JT(x0)|dx0

Change-of-Variables:
pθ (T(x0)) = p0(x0)|det JT(x0)|−1

= ∫ [ log p0 (x0) − log|det JT(x0)| − log q (T(x0)) ] p0(x0)|det JT(x0)|−1|det JT(x0)|dx0

= 𝔼p0(x0) [ log p0(x0) − log det JT(x0) − log q (T(x0)) ]

𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]



Reverse KL Training
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismA density

p0(x0)

q(x) =
1
Z

q̃(x)
pθ = Tθ#p0

We can use the Reverse KL to derive a loss:

= 𝔼p0(x0) [ log p0(x0) − log det JT(x0) − log q (T(x0)) ]
𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]



Reverse KL Training
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismA density

p0(x0)

q(x) =
1
Z

q̃(x)
pθ = Tθ#p0

We can use the Reverse KL to derive a loss:

=+C − 𝔼p0(x0) [ log|det JT(x0)| + log q̃ (T(x0)) ]

Since log q(x) = log q̃(x) − Z= 𝔼p0(x0) [ log p0(x0) − log det JT(x0) − log q (T(x0)) ]
and p0(x0) does not depend on  θ

𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]



Reverse KL Training
Have:

base distribution

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphismA density

p0(x0)

q(x) =
1
Z

q̃(x)
pθ = Tθ#p0

We can use the Reverse KL to derive a loss:

=+C − 𝔼p0(x0) [ log|det JT(x0)| + log q̃ (T(x0)) ]

≈ −
1
n

n

∑
i=1

[ log|det JT(x(i)
0 )| + log q̃ (T(x(i)

0 )) ]

Since log q(x) = log q̃(x) − Z= 𝔼p0(x0) [ log p0(x0) − log det JT(x0) − log q (T(x0)) ]
and p0(x0) does not depend on  θ

x(i)
0 ∼ p0Estimate from samples 

𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]



Reverse KL Training
Have:

Tθ = TK,θ ∘ … ∘ T2,θ ∘ T1,θ

model distribution 

diffeomorphism
pθ = Tθ#p0

Goal: Minimize

2.  must be a diffeomorphism (equivalently, each )Tθ Tk,θ

To evaluate this:
1. Need the value , but not samplesq̃(x)

3. Evaluate  and  efficientlyTθ(x) det JT(x)
Practically:

base distribution

A density

p0(x0)

q(x) =
1
Z

q̃(x)

Note: you don’t need to be able to evaluate  to trainT−1
θ

… but you do need it if you want to evaluate the model density.

J(θ) = −
1
n

n

∑
i=1

[ log|det JT(x(i)
0 )| + log q̃ (T(x(i)

0 )) ]



Forward KL

Objective

Reverse KL

ℒ(θ) = 𝖪𝖫 [ q(x) ∣ ∣ pθ(x) ]

𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]

Sample ?q(x)

✅

❌

Summary



Forward KL

Objective

Reverse KL

ℒ(θ) = 𝖪𝖫 [ q(x) ∣ ∣ pθ(x) ]

𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]

Sample ?q(x) Evaluate ?q̃(x)

✅

✅❌

❌

Summary



Forward KL

Objective

Reverse KL

ℒ(θ) = 𝖪𝖫 [ q(x) ∣ ∣ pθ(x) ]

𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]

Sample ?q(x) Evaluate ?q̃(x)

✅

✅❌

❌

Model Param. 

T−1
θ

Tθ

Summary



Forward KL

Objective

Reverse KL

ℒ(θ) = 𝖪𝖫 [ q(x) ∣ ∣ pθ(x) ]

𝒥(θ) = 𝖪𝖫 [ pθ(x) ∣ ∣ q(x) ]

Sample ?q(x) Evaluate ?q̃(x)

✅

✅❌

❌

Model Param. 

T−1
θ

Tθ

Use Case

Density Estimator

Sampler

Summary

(Without inverting model)



Questions?



Practicalities

2. Efficiently Trainable:  can be evaluated efficiently det JTk,θ

3. (Optional) Easily Invertible:  can be evaluated efficiently T−1
k,θ

• The inverses must exist, but maybe aren’t easy to compute.

We will focus on implementing  — everything holds for the other case.Tθ

Goal: Minimize J(θ) = −
1
n

n

∑
i=1

[ log|det JT(x(i)
0 )| + log q̃ (T(x(i)

0 )) ]
Requirements on :Tk,θ

1.  is a diffeomorphismTk,θ

Hot topic ~2015-2020: inventing new flow architectures

NICE, RealNVP, Glow, Masked Autoregressive Flows, Inverse Autoregressive Flows, Neural Spline Flows, …

Tension between expressivity and tractability



Practicalities
Desired:

1. Efficiently Trainable:  can be evaluated efficiently det JTk,θ

2. (Optional) Invertible:  can be evaluated efficiently T−1
k,θ

Then, explicitly compute det Jf(x)

• This is  — expensive if  is even moderately largeO(d3) d

What do we mean by “tractable” Jacobians?

For any differentiable  , you can compute  via automatic differentiationf : ℝd → ℝd Jf(x) ∈ ℝd×d

• Requires  autodiff calls (one per row/column; take  to be one-hot)d v

• Expensive if  is a neural network block or  is largef d

• Recall: autodiff computes  (VJP) or  (JVP)vTJf(x) Jf(x)v

We need to design  such that  can be computed quickly. Tk,θ det JTk,θ
(x)



Autoregressive Flows

⟹ det JT =
d

∏
i=1

JT,ii
JT(x0) =

∂T(1)

∂x(1)
0

… ∂T(1)

∂x(d)
0

⋮ ⋱ ⋮
∂T(d)

∂x(1)
0

… ∂T(d)

∂x(d)
0

We need to design  such that  can be computed quickly. Tk,θ det JTk,θ
(x)

JT =

J11 0 0 … 0
J21 J22 0 … 0
J31 J32 J33 … 0
⋮ ⋱ ⋮

Jd1 Jd2 Jd3 … Jdd

Special case:
 is triangularJT



Autoregressive Flows

T(x) =

f1(x(1))
f2(x(1:2))

⋮
fi(x(1:i))

⋮
fd(x(1:d))

 is triangular.⟹JT

We need to design  such that  can be computed quickly. Tk,θ det JTk,θ
(x)

If  is triangular, we can compute  in  timeJTk,θ
det JTk,θ

(x) O(d)

JT(x0) =

∂T(1)

∂x(1)
0

… ∂T(1)

∂x(d)
0

⋮ ⋱ ⋮
∂T(d)

∂x(1)
0

… ∂T(d)

∂x(d)
0

JT =

J11 0 0 … 0
J21 J22 0 … 0
J31 J32 J33 … 0
⋮ ⋱ ⋮

Jd1 Jd2 Jd3 … Jdd

The th output coordinate only 
depends on the first  input 
coordinates

i
i



Example: RealNVP

x =

x(1)

x(2)

⋮
x(ℓ)

x(ℓ+1)

⋮
x(d)

[Dinh 2016]

x(1:ℓ)

x(ℓ+1:d)

s ∈ ℝd−ℓ

t ∈ ℝd−ℓ

x(ℓ+1:d) ⊙ exp(s) + t

[ x(1:ℓ)

x(ℓ+1:d) ⊙ exp(s) + t] = T(x)

This mapping is triangular. Is it easily invertible? Yes! 

T−1(x) = [ x(1:ℓ)

(x(ℓ+1:d) − t) ⊙ exp(−s)]



Example: RealNVP

Samples on CelebA at 64x64 resolution

Good enough for an ICLR paper in 2017 :)

[Dinh 2016]



Questions?



Chapter 2 
Continuous-Time Flows



Crash Course on ODEs

Vector fields  tell you velocity 
of a particle located at  at time 

v(t, x) : ℝ × ℝd → ℝd

x t

dxt = v(t, xt)dt x0 = xAn ODE 

tells us how a particle moves starting from x0



44

Crash Course on ODEs
Euler’s Method: simplest scheme for numerically solving an ODE dxt = v(t, xt)dt x0 = x

“Step size”

Discretize time:

Move particle: xt+h = xt + hv(t, xt)



From Discrete to Continuous Dynamics

x0

Normalising flows iteratively transform a source sample:

T1 x1 = x0 + T1(x0) T2 x2 = x1 + T2(x1) …

Making  small, we get an ODE:Δt → dt d
dt

xt = T(xt, t)

Instead of thinking about layers, think of time.  

Each layer tells us where  moves after  seconds: xt Δt xt+Δt = xt + Δt ⋅ T(xt, t)

xk+1 = xk + T(xk, k)

xt+Δt − xt

Δt
= T(xt, t)



Continuous-Time Flows
Critical idea:

Instead of directly implementing a transformation , implement a velocity  Tθ(x) vθ(x, t)

Tθ(x0) = x1 = x0 + ∫
1

0
vθ(xt, t)dtThis induces a transformation:

Why would we do this?

2. Expressivity
Like having an infinitely deep network

3. Leads to Diffusions and Flow Matching
This reformulation is a major conceptual leap

1. Flexibility
Very mild conditions on    is a diffeomorphism!v ⟹ Tθ
(existence and uniqueness of ODE solution)

T−1
θ (x1) = x1 − ∫

1

0
vθ(xt, t)dt

No need to worry about tractable Jacobians, inverting your network, etc.



Training CNFs
Have data samples  for x(i) ∼ q(x) i = 1,2,…, n

Choose a base distribution p0(x0)

i.e., draw initial particles  and solve  on x0 ∼ p0 dxt = vθ(xt, t)dt t ∈ [0,1]

Implement velocity vθ(t, x)

Induces model distribution p1 = (Tθ)#p0 Tθ(x0) = x1 = x0 + ∫
1

0
vθ(xt, t)dt

We want a continuous-time change of variables formula

To evaluate a KL divergence, need log p1(x)

ℒ(θ) = 𝖪𝖫 [ q(x) ∣ ∣ p1(x) ] =+C − 𝔼q(x) [ log p1(x) ]



Continuity PDE

dXt = v(Xt, t)dt X0 ∼ p0

∂t pt(x) + div(pt(x)v(x, t)) = 0

If the particles  follow the dynamicsXt

Then the density  at any time  solves the continuity PDEpt(x) t > 0

Continuity PDE tells us how the density at every fixed location  changes over timex
Intuition:

Proposition [Continuity Equation].

Evolution of individual particles
d
dt

xt = v(xt, t)
Evolution of distribution of particles

∂t pt = − div(vt pt)

Two equivalent descriptions of the same process:

(“Local”) (“Global”)

div(v) =
d

∑
i=1

∂
∂x(i)

v(t, x(i))

= ∇ ⋅ v(t, xt)



Change-of-Variables 2.0

This tells us how the density of a particular particle changes over time.
Intuition:

Proof:

∂t log pt(x) =
1

pt(x)
∂t pt(x)Usual chain rule:

= −
1

pt(x)
div(vt(x)pt(x))Continuity PDE:

= −
1

pt(x) (pt(x)div(vt(x)) + ⟨vt(x), ∇x pt(x))Chain rule for div:

= − div(vt(x)) − ⟨vt(x), ∇xlog pt(x)⟩

d
dt

log pt(xt) = − div(vt(xt)) = − tr (Jv(t, xt))
Corollary.



This tells us how the density of a particular particle changes over time.

d
dt

log pt(xt) = − div(vt(xt)) = − tr (Jv(t, xt))

Intuition:

Proof (continued):

Corollary.

∂t log pt(x) = − div(vt(x)) − ⟨vt(x), ∇xlog pt(x)⟩

Compute the total derivative via the chain rule:

d
dt

log pt(xt) = ∂t log pt(xt) + ⟨ d
dt

xt, ∇xlog pt(xt)⟩
= ∂t log pt(xt) + ⟨vt(xt)∇xlog pt(xt)⟩
= − div(vt(xt))

Change-of-Variables 2.0



Takeaway: log p1(X1) = log p0(X0) − ∫
1

0
div (v(t, Xt)) dt

Given , can get  and its density  simultaneously:x0 ∼ p0 x1 log p1(x1)

[ X1

log p1(X1)] = [ X0

log p0(X0)] + ∫
1

0 [
vθ(t, Xt)

−div (vθ(t, Xt))] dt

• The same idea works “in reverse”.

d
dt

log pt(xt) = − div(vt(xt)) = − tr (Jv(t, xt))
Corollary.

Change-of-Variables 2.0



Training CNFs

1. Draw samples  for x(i)
1 ∼ q(x) i = 1,2,…, n

Algorithm:

ℒ(θ) = 𝖪𝖫 [ q(x) ∣ ∣ p1(x) ] =+C − 𝔼q(x) [ log p1(x) ]3. Do gradient descent to minimize  

2. Compute  vialog p1(x) log p1(X1) = log p0(X0) − ∫
1

0
div (vθ(t, Xt)) dt

• In practice, plug into your favourite numerical ODE solver



Training CNFs
Remarks:

1. The neural network  no longer is required to be a diffeomorphism!vθ(t, x)

• Requires  at every ODE steptr (Jvθ
(t, x))

… cheaper than a determinant, but still needs  backward passesO(d)

• A common trick: Hutchinson’s Trace Estimator

tr (Jvθ
(t, x)) ≈ wTJvθ

(t, x)w w ∼ N(0, I)

Intuition: project your Jacobian onto a random direction w
Only needs one backwards pass
Example: FFJORD [Grathwohl 2018]

3. Training requires backprop through ODE solver
• Huge memory costs if done naively

• “Adjoint method” solves this

2. Training requires numerically solving an ODE (“simulating”)



Questions?



Summary
Discrete-Time Flows iteratively transform samples from a simple distribution

[Papamakarios 2021]

•Transformations must be invertible and  differentiable (diffeomorphism)T, T−1

•Transformed density can be computed via change-of-variables
•Trained by divergence minimisation (~maximum likelihood)

•Useful for both density estimation and sampling

•Require specialised architectures for tractable Jacobians



Summary
Discrete-Time Flows transform samples through an ODE

Evolution of individual particles
d
dt

xt = v(xt, t)
Evolution of distribution of particles

∂t pt = − div(vt pt)

(“Local”) (“Global”)

•Neural network parameterises vector field 

•No need for specialised architectures

•Trained by divergence minimisation (~maximum likelihood)

•Continuous-time change of variables derived via continuity PDE


